Сейчас, когда вы читаете эту книгу, какой ноздрей вы дышите? Чтобы проверить, можно закрыть одну ноздрю, сделать пару вдохов и выдохов, а потом закрыть вторую. Почувствовали разницу? Даже если вы абсолютно здоровы, у вас работает в основном одна ноздря, а другая отдыхает.
На снимке МРТ (см. рис. 6) видно, что этот человек сейчас хорошо дышит правой ноздрей, там назальные пути шире, а левая ноздря отдыхает.
Рис. 6. Снимок МРТ
Назальный цикл – процесс носового дыхания – меняется каждые 2,5 часа. Дело в том, что поддерживать слизистую увлажненной, а клетки здоровыми сразу в двух носовых ходах очень энергозатратно. Пока одна ноздря работает вовсю, увлажняет вдыхаемый воздух, фильтрует бактерии, шевелит ресничками слизистой, чтобы гнать сопли и поддерживать здоровье носовой полости, другая половина носа отдыхает, слизистая за это время восстанавливается и готовится к работе. Отдыхающую ноздрю «закладывает» с помощью все той же пещеристой ткани, как в акульих жабрах. К ней приливает кровь, она расширяется и перекрывает частично или полностью носовой ход. Если назальный цикл нарушается из-за нервного влияния или из-за сосудосуживающих капель, слизистая истощается и пересыхает, может начаться хронический насморк или аллергический ринит. Вот что бывает, если не беречь свои пещеристые ткани и пытаться вылечить естественный физиологический процесс, подумав, что это у вас ноздря заложена.
Кстати, как и в слизистой носа, в жабрах присутствует большое количество иммунных клеток, которые всегда готовы отразить атаку вирусов и бактерий извне. Если акула начнет «сопливить», потому что подхватила в воде какой-то вирус, то это будет происходить в жабрах[1].
Если вы думаете, что видоизмененные жабры – не такое уж роскошное наследство и рыбы могли быть более щедрыми на подарки своим далеким потомкам, не спешите с выводами. Эти ребята порядком наследили в дыхательной системе человека.
Некоторые рыбы, чтобы не утонуть, используют плавательный пузырь, такой надувной круг для плавания, только находящийся внутри тела рыбы. У рыб он формируется из кишечника и помогает держаться в толще воды. Плавательный пузырь – это прототип наших легких, они имеют одинаковое происхождение. Если бы эволюция свернула немного не туда, мы бы тоже ходили с плавательным пузырем. Как и легкие, он формируется из выпячивания кишки. Как и легкие, внутри он смазан особым жироподобным веществом – сурфактантом, которое помогает ему не спадаться и не слипаться его стенкам, а еще с его помощью некоторые рыбы, как и мы с помощью легких, умеют издавать звуки и даже кричать (например, рыбы-жабы).
Некоторые виды рыб используют плавательный пузырь для дыхания, если в водоеме становится мало кислорода. Кстати, наши легкие тоже помогают нам не только дышать, но и плавать. Если задержать дыхание на вдохе, оставаться на плаву в воде намного легче, чем если до конца выдохнуть, потому что в этом случае объем внутреннего «спасательного круга» значительно уменьшится.
До сих пор ведутся споры, дал ли плавательный пузырь рыб начало легким, или они сформировались независимо друг от друга. В ходе эволюции природа перепробовала все варианты дыхания, у некоторых животных для этого используются любые органы, контактирующие с кислородной средой, – кожа, глаза, кишки, жабры, трахея, легкие, плавательный пузырь, слизистая рта и носа. Но одной из самых удачных конструкций, позволяющей жить в богатой кислородом среде, все-таки оказались легкие.
Чем дальше в ходе эволюции развивались легкие, тем на большее количество сегментов они разделялись. Такое деление увеличивало площадь дыхательной поверхности и позволяло легким увеличивать количество кислорода, доставляемого в кровь. У древних рыб, амфибий и рептилий легкие очень простые, не разделенные на большое количество камер, и больше напоминают сегментированные пузыри, обильно обросшие кровеносными капиллярами (см. рис. 7).
Рис. 7. Легкие рыб, амфибий, рептилий и млекопитающих
Площадь поверхности таких пузырей, если развернуть их слизистые оболочки, не очень велика и не способна снабжать организм большим количеством кислорода. Из-за этого такие животные не могут позволить себе отапливать собственное тело. Процесс создания энергии за счет реакции кислорода и глюкозы в их клетках, который сопровождается выделением тепла, не настолько мощный и быстрый, чтобы поддерживать постоянную температуру тела. Уровень метаболизма у рептилий составляет только 10 % от нашего. То есть если человек в сутки тратит 2000 ккал, то крокодил весом с человека – всего 200 ккал. Поэтому он может есть раз в год, а мы нет. Птицам в этом плане еще сложнее, им необходимо намного больше энергии из-за полета и высокой температуры тела (40–41 °C), поэтому их метаболизм в три раза выше, чем у млекопитающих.
Если бы мы летали, нам нужно было бы не 2000 ккал в сутки, а все 6000 ккал. И летали бы мы, видимо, от одного кафе к другому. Голуби так и делают, да и взлетать стараются в крайнем случае, потому что потом придется съесть огромное количество пищи, чтобы скомпенсировать это необдуманное действие. Ходить с метаболической точки зрения «дешевле».
Чем мы дышим?
Прежде чем рассказывать об особенностях работы дыхательной системы человека, мне необходимо представить вам главные действующие лица, то есть части, из которых эта система состоит.
У человека в ходе эмбрионального развития паренхима легких – ткань с пузырьками-альвеолами развивается отдельно, а трахея и бронхи – отдельно. Трахея разделяется на два главных бронха – это толстые хрящевые трубки, а они ветвятся на множество бронхиол – трубочек потоньше. Всего у нас около 150 000 бронхиол, на которых, как виноград на ветке, разместились 700 миллионов альвеол – маленьких пузыриков из эпителиальной ткани, достаточно тонких, чтобы газ легко проникал через их стенку. Именно в них кислород переходит из воздуха в кровь.
Если развернуть все альвеолы и сшить из них полотно, им можно будет застелить теннисный корт или пять однокомнатных хрущевок.
Бронхиальное дерево ветвится и заполняет собой всю предоставленную ему площадь, как корень растения, которое много лет не пересаживали. Такое ветвление помогает очень плотно и эффективно упаковать максимальное число альвеол и увеличить площадь поверхности для обмена кислородом между воздухом и кровью. Чтобы понять, как это работает, представьте, что вы открыли бутылку газировки и оставили ее без крышки. Скорее всего, газ выйдет из нее минут за 20–30. Если же вы выльете эту газировку в большое плоское блюдо, то на это понадобится 5–10 минут. Чем больше площадь поверхности этой жидкости, тем быстрее газообмен, тем быстрее газ из газировки перейдет в воздух комнаты. В легких это правило тоже работает, именно поэтому и необходима такая огромная площадь, только там процесс идет наоборот – газ из альвеол смешивается с жидкостью – кровью.
Чтобы альвеолы не слипались и не схлопывались при каждом выдохе, внутри они смазаны сурфактантом. Это особая смесь жиров и белков получилась настолько удачной, что почти не менялась на протяжении миллиардов лет и практически одинакова что у древних и более примитивных животных, что у человека. Ее состав немного меняется только в случае, если животное живет в очень холодном или очень жарком климате или на экстремальной высоте.