Более полное описание патентной заявки на ленту новостей говорит о системе совместной фильтрации, действующей в гораздо больших масштабах, нежели системы электронной почты 1990-х годов. Его стоит процитировать полностью, потому что оно предсказывает, во что превратится в следующем десятилетии большая часть онлайн-жизни (от социальных сетей до потоковой передачи данных и электронной торговли): множество автоматизированных лент, диктуемых в большей степени корпорациями, а не пользователями, которые постепенно формируют более пассивные отношения между пользователями и подачей контента.
Элементы медиаконтента выбираются для пользователя на основе его отношений с одним или несколькими другими пользователями. Эти отношения пользователя с другими пользователями отражаются в выбранном медиаконтенте и его формате. Элементам медиаконтента присваивается некоторый порядок (например, на основе их предполагаемой важности для пользователя), и именно в этом порядке их представляют пользователю. Пользователь может изменить порядок элементов медиаконтента. Взаимодействие пользователя с медиаконтентом, доступным в среде социальной сети, отслеживается, и это взаимодействие используется для выбора дополнительных элементов медиаконтента для пользователя.
Этот фрагмент содержит все элементы алгоритмической ленты – системы, которая прогнозирует относительную важность информации для конкретного пользователя, определяемую на основе наблюдения за контентом, который он просматривал в прошлом; затем система продвигает в начало списка тот контент, который, на ее взгляд, с максимальной вероятностью будет столь же интересен. Цель – отфильтровать контент, чтобы выбрать наиболее вовлекающий. Это побуждает пользователя потреблять больше информации и подписываться на большее количество аккаунтов в целом. Социальные сети обрели жизнеспособность, поскольку пользователи могли чаще пользоваться ими и дольше оставаться на сайтах. Если наши друзья не активны в Фейсбуке (у меня, например, как раз такой случай), то и мы, скорее всего, снизим свою активность.
Сначала ленту новостей упорядочивали исключительно в хронологическом порядке, и на первом месте находились самые свежие обновления; однако постепенно она стала подчиняться более алгоритмической логике. По мере развития Фейсбука и увеличения активности пользователей, которые добавляли все больше связей, переходя от личных отношений к публикациям и брендам, объем отдельных обновлений увеличивался. Со временем обычные заметки от друзей дополнились сообщениями от групп, ссылками на новости и объявлениями о распродажах. Обычные пользователи уже не могли рассчитывать, что им удастся следить за хронологической лентой при таком объеме и разнообразии сообщений, но даже если бы попытались, то их либо завалило бы информацией, либо они пропустили бы важное сообщение – что могло вызвать недовольство платформой. В конце концов масштаб и скорость потребления в Фейсбуке привели к тому, что агрессивная алгоритмическая фильтрация стала необходимой.
В 2009 году в Фейсбуке появилась кнопка Like в виде поднятого большого пальца; она стала показывать, насколько пользователю интересен тот или иной контент. Порядок в ленте определяла вовлеченность пользователей, измеряемая лайками, комментариями и предыдущими взаимодействиями аккаунтов между собой. Эта алгоритмическая система получила название EdgeRank, и Фейсбук определил ее основные параметры: совместимость, вес действий и время. Под действием понималось любая деятельность людей в Фейсбуке, которая затем отправляется в ленту новостей в виде фиксируемого обновления. Совместимость отражала степень связи пользователя с автором поста и силу этой связи (например, постоянное комментирование постов друзей). Комментарий оценивался выше, чем лайк, а недавние взаимодействия – выше, чем старые. Показатель веса оценивал различные категории взаимодействий: обновление у друга, разместившего новую фотографию, могло иметь больший вес для алгоритма, нежели размещение ссылки на новость или вступление в новую группу. Время отражало возраст действий: при прочих равных условиях недавние действия с большей вероятностью оказывались в верхней части ленты новостей, нежели старые. Показатель EdgeRank не оставался вечным, как результат баскетбольного матча в турнире; он постоянно менялся. И эти три категории – не просто отдельные, нейтральные единицы данных; это совокупность данных, упакованных и интерпретированных Фейсбуком особым образом.
Отследить эволюцию алгоритмической ленты Фейсбука сложно, поскольку она постоянно обновляется, а компания раскрывает подробности лишь время от времени. Все, что мы знаем о ней помимо официальных заявлений, сводится к журналистским расследованиям и опыту пользователей, которые ощущают эффекты обновленных алгоритмов задолго до того, как те становятся достоянием общественности. Когда меняется механизм подачи информации, знакомые веб-сайты могут начать восприниматься иначе. Например, вы обнаруживаете, что реже видите в Фейсбуке сообщения своих друзей и чаще – посты групп или компаний или что Инстаграм никогда не показывает в вашей ленте посты определенного друга, и вам приходится искать их с помощью поиска.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.