Спиральные галактики (рис. 2, 3 на цветной вклейке), напротив, демонстрируют разнообразие форм. Галактики подтипа Sa мало сплюснуты, их спиральные рукава не отходят далеко от обширного центрального балджа (окружающего галактическое ядро «вздутия», несколько напоминающего Е-галактику), не фрагментированы и не имеют ответвлений, а темная полоса пыли вдоль галактического экватора (характернейшая деталь S-галактик) довольно узка. Галактики подтипа Sc иные – у них маленькое ядро и совсем маленький балдж, если он вообще есть, рукава отходят от ядра резко, они фрагментированы и изобилуют ответвлениями, а пылевая полоса по экватору таких галактик мощная и широкая. Промежуточное положение между Sa и Sc занимают галактики подтипа Sb. Например, широко известная Туманность Андромеды (М31) относится к подтипу Sb, а Туманность Треугольника (М33) – к Sc. Хороший пример галактики Sa – М104 («Сомбреро»), см. рис. 4 на цветной вклейке.
Спиральные галактики могут отличаться друг от друга также по количеству спиральных рукавов. Часто их два, но не обязательно. Один из рукавов может быть «редуцирован» и превратиться в этакий едва заметный рудимент, и тогда у галактики по сути остается всего один рукав. Бывает, что у галактики развиваются три, четыре и более рукавов. У М33 три основных рукава и с десяток мелких, обрывочных. У галактики М63, известной под кличкой «Подсолнух», десятка два рукавов. У галактики М109 (рис. 5 на цветной вклейке), внешне похожей на нашу, четыре рукава, причем отходят они не от ядра, а от концов бара – перемычки, проходящей через ядро. Такие галактики с перемычками обозначаются как SBa, SBb и SBc.
Легко классифицировать галактики, глядя на них со стороны. Установить спиральную структуру нашего собственного Млечного Пути нам, находящимся внутри него, оказалось в высшей степени трудно. Теперь известно, что наша Галактика относится к подтипу SBb и имеет четыре основных спиральных рукава. Существуют и местные рукава – ответвления от основных. В одном из таких местных рукавов-ответвлений находится наша Солнечная система.
Казалось бы, к чему весь этот разговор об эволюции Вселенной и о галактиках, коль скоро тема книги – Солнечная система? Подождите немного, читатель, а пока поверьте на слово: это сделано не зря.
Во времена Хаббла считалось, что галактики в своем развитии проходят стадии от неупорядоченных Irr-галактик (рис. 6 на цветной вклейке) к Sc, Sb, Sa и далее к аккуратным (пусть и скучным) Е-галактикам. Этакое превращение дремучего леса во французский регулярный парк. Существовала и диаметрально противоположная точка зрения: галактики-де рождаются эллиптическими, затем в них развивается вращательная неустойчивость, что приводит к образованию спиральных рукавов, после чего галактика мало-помалу теряет структуру и становится неправильной. Словом, обратная эволюция: от регулярного парка – к дремучему лесу с буреломами.
Прошло изрядное время, прежде чем была понята наивность подобных воззрений. Галактики рождаются либо как спиральные, либо как эллиптические, либо как неправильные и остаются таковыми на протяжении миллиардов лет, а если не произойдет тесного сближения (или столкновения) с другой галактикой, то и на протяжении всего существования галактики. Исключение здесь может быть только одно: некоторые карликовые неправильные галактики могут со временем превратиться в спиральные. Пример: Большое Магелланово Облако (БМО). В оптических лучах эта неправильная галактика демонстрирует нам некую барообразную структуру, но и только. Зато снимок в лучах нейтрального водорода выявляет заведомую спираль. Таким галактикам просто не хватило времени, прошедшего от рождения Вселенной, чтобы стать спиральными галактиками. У них еще все впереди.
Каким же образом некоторая масса материи, скопившаяся вокруг гравитационной «ямы», может «знать», в какого типа галактику ей превратиться?
Ответ: все дело в массе вещества и его моменте вращения.
Представим себе сферическое газовое облако определенной (галактической) массы, начисто лишенное момента вращения. Под действием собственного тяготения оно будет сжиматься. При идеальной сферичности и идеальной однородности облака (такого в природе не бывает, но вообразить-то мы можем) облако останется идеально сферическим во время всего сжатия и не будет фрагментировать на меньшие облака. Кончится это скверно. Пусть при достижении сжимающимся газом температуры в несколько миллионов кельвинов внутри облака начнутся ядерные реакции – при массе облака порядка миллиардов солнечных масс они не смогут остановить сжатие. Получится не галактика и не звезда чудовищной светимости, а сверхмассивная черная дыра.
Реализовывался ли подобный сценарий на практике, никому не известно. Но в меньших масштабах – реализовывался многократно. В центре практически каждой упорядоченной галактики находится «центральный монстр» – сверхмассивная черная дыра. Если в центре нашей Галактики она сравнительно мала – около 3 млн солнечных масс, – то масса «центрального монстра» Туманности Треугольника оценивается (впрочем, неуверенно) в 100 млн солнечных масс. Очень возможно, что в центрах крупных эллиптических галактик находятся еще более массивные черные дыры. Похоже на то, что самые центральные и плотные области протогалактического облака все-таки сжимаются по описанной схеме, а стекающий в образовавшуюся черную дыру газ дополнительно увеличивает массу «центрального монстра».
Другой сценарий – достаточная масса протогалактического облака и малый момент вращения. При этих «вводных» облако начнет сжиматься, причем на полюсах оно будет сжиматься сильнее, чем на экваторе, в результате чего примет форму сплюснутого сфероида[7]. Умозрительно понятно, что вращающееся тело приобретает некоторую сплюснутость, как, например, слегка сплюснут земной шар, но механизм сплющивания у газового облака иной. Представим себе две частицы, обращающиеся вокруг центра облака где-нибудь на его периферии, и примем из соображений простоты, что экваториальные составляющие их орбитальных скоростей равны, – меридиональные же составляющие также равны, но противоположны по направлению (рис. 7 на цветной вклейке). Что произойдет с частицами при соударении?
Если мы перейдем в систему координат, связанную с частицами, то поймем, что экваториальная составляющая их скорости не изменится. С меридиональной составляющей все будет иначе: ведь лишь при абсолютно упругом соударении частицы стукнутся друг о друга и разлетятся прочь, как резиновые мячики. Но атомы (а протогалактическое облако состоит из ионизованных или неионизованных атомов) ведут себя не как резиновые мячики. При ударе атомы могут перейти в возбужденное состояние, на что будет затрачена часть кинетической энергии частиц. Как следствие, разлет частиц прочь друг от друга будет происходить с меньшей скоростью, чем скорость их сближения до удара, а возбужденные атомы со временем избавятся от избытка энергии, спонтанно испустив кванты, и эти кванты скорее всего беспрепятственно покинут протогалактическое облако. Меридиональная составляющая скорости частиц уменьшится, а экваториальная не изменится.
На практике, конечно, столкновения между частицами во вращающемся облаке носят самый замысловатый характер, но наша простейшая модель помогает понять главное: облако будет сплющиваться, причем пресловутая центробежная сила тут решительно ни при чем. Дальнейшее зависит от плотности облака: если основная часть газа успеет превратиться в звезды до достижения облаком сплюснутости, характерной для галактик Е7, то родится эллиптическая галактика. Ведь механизм сплющивания перестанет действовать, поскольку газ будет собран в звездах, а столкновение звезд в галактике – явление настолько редкое, что его не стоит принимать во внимание.
Если же начальный момент вращения облака велик, то облако успеет сжаться до кондиций спиральной галактики еще до фазы активного звездообразования. Разовьется неустойчивость, в результате чего появятся спиральные рукава и, возможно, бар. Самая заметная часть излучающего вещества будет собрана в галактическом диске, а наиболее яркой его частью станет спиральный узор.