Еще хуже с космологией – эта структурная часть астрономии в принципе ограничена в области методологии, так как имеет дело с одним объектом – Вселенной, в которой мы живем и часть которой наблюдаем. Да и нет пока у человечества возможностей экспериментировать даже с одним объектом этаких масштабов…
Как изменялись со временем взгляды европейских ученых на Вселенную – тема интереснейшая, но не для этой книги. Здесь мы ограничимся современным состоянием научных знаний, причем не обо всей Вселенной, а лишь о невообразимо крошечной ее части – Солнечной системе.
Начать, правда, придется с макроскопических явлений и протянуть нить от грандиозных процессов рождения Вселенной к нашей современности.
По современным представлениям наша Вселенная образовалась в результате Большого взрыва примерно 13–14 млрд лет назад. Мы ничего не знаем о причинах взрыва и о физике этого процесса в диапазоне времени от нуля до 10-43 с. Эта величина – так называемое планковское время – маркирует собой временного границу, после которой к расширяющейся Вселенной можно применять известные нам законы физики, но до этой границы лежит область действия квантовой гравитации – науки, пока еще не созданной. В крайне молодой и очень горячей расширяющейся Вселенной шли процессы, сколько-нибудь подробное описание которых увело бы нас слишком далеко от темы этой книги. Нас интересует только эра вещества.
До 10-36 с материи еще нет – есть лишь так называемое скалярное поле, и Вселенная расширяется экспоненциально. Температура ее в момент рождения вещества чудовищна – порядка 1029 К. На 1035 с происходит рождение барионной асимметрии Вселенной, то есть барионов (представленных в то время кварками) родилось чуть больше, чем антибарионов. «Чуть» означает примерно одну миллиардную долю, но этого оказалось достаточно, чтобы впоследствии, после аннигиляции частиц и античастиц, Вселенная оказалась состоящей из вещества, а не из антивещества.
Существуют, правда, теории «холодного бариогенезиса», в которых рождение привычной нам материи с возникновением барионной асимметрии произошло гораздо позже – вблизи 10-10 с. Легко понять, что для нас сейчас эти тонкости не имеют значения.
К 10-10 с температура Вселенной за счет расширения упала до 1016 К. Вещество Вселенной – плазма. Она расширялась уже гораздо медленнее – по степенному закону. На 10-10 с произошел «электрослабый фазовый переход», когда силы единого электрослабого взаимодействия разделились на силы слабого взаимодействия и силы электромагнитные. Приобрели массу все известные нам элементарные частицы, безмассовым остался только фотон. Однако при столь больших температурах и плотностях о «нормальном» веществе говорить еще не приходится – во Вселенной могли существовать лишь кварки, нейтрино и частицы-переносчики слабого взаимодействия. Вселенная представляла собой своеобразный «кварковый суп». Лишь к моменту времени 10-4 с от Большого взрыва при температуре 1012 К из «слипшихся» кварков смогли наконец образоваться протоны и нейтроны. Аннигиляция вещества и антивещества привела к появлению громадного количества фотонов. На каждую частицу материи ныне приходится около миллиарда фотонов.
К исходу первой секунды жизни Вселенной ее температура упала «всего» до 10 млрд К. Это как раз характерная температура звездных недр. Что происходит в звездных недрах? Правильно, там идут ядерные реакции. Шли они и в очень молодой (но уже состоявшей из вещества) Вселенной. Но реакции реакциям рознь. Что же могло образоваться из первичного горячего и плотного скопища протонов и нейтронов за весьма ограниченное время?
Во-первых, дейтерий. Во-вторых, гелий-3 и гелий-4. И, наконец, литий. Последнего образовалось немного – не более 1 % от общей массы вещества во Вселенной. Дейтерия и двух изотопов гелия – несколько больше. Но все же основная часть протонов и нейтронов не успела прореагировать в отпущенный ей малый отрезок времени. Что до более тяжелых, чем литий, элементов, вроде бериллия или бора, то до образования сколько-нибудь заметного их количества дело просто не дошло – уже к двухсотой секунде от момента Большого взрыва расширяющаяся Вселенная успела остыть настолько, что ядерные реакции в ней прекратились.
Первые 50 тыс. лет во Вселенной доминировало излучение: плотность его энергии превышала плотность энергии вещества. Но так как первая зависит от размеров Вселенной в четвертой степени, а вторая – лишь в кубе, то рано или поздно должен был наступить момент доминирования вещества. Он и наступил – пока, впрочем, лишь для темной материи[5], не взаимодействующей с излучением. Казалось бы, что нам за дело до нее? Но именно темная материя, стекая в первичные, случайно возникшие и пока еще незначительные, гравитационные «ямы», начала «углублять» последние, подготавливая их для барионной материи.
Лишь спустя 300 тыс. лет после Большого взрыва излучение «отклеилось» от барионного вещества и получило возможность распространяться свободно. Температура Вселенной упала до 3000 К, и ядра получили возможность захватывать электроны. Барионная материя начала «сползать» в подготовленные темной материей гравитационные «ямы», подготавливая рождение крупномасштабной структуры Вселенной. Надо сказать, что каждая такая «яма» дала начало скоплению, а то и сверхскоплению галактик.
Отчего в молодой расширяющейся Вселенной возникли неоднородности, превратившиеся в гравитационные «ямы»? Вопрос, думается, лишен смысла. Гораздо труднее представить себе полностью однородную расширяющуюся Вселенную, лишенную каких бы то ни было, даже самых малых, флюктуаций плотности и температуры и сохраняющую однородность по мере расширения в бесконечность. Таких чудес в природе не бывает. А коль скоро флюктуации существуют, то в дальнейшем они будут только усугубляться. Температура же вещества будет все время падать и не станет препятствием к появлению в гравитационных «ямах» огромных облаков материи.
Так оно и происходило в действительности. Каждое такое облако имело определенную массу, температуру и некий интегральный момент вращения. В нем также возникали гравитационные «ямы» меньших размеров, куда стекало вещество. Со временем каждое облако делилось на меньшие облака, связанные друг с другом гравитационным взаимодействием, а те, в свою очередь, на еще меньшие. Так образовались скопления и меньшие, чем скопления, группы галактик вроде нашей Местной системы[6] и отдельные галактики.
Есть похожие галактики, но нет двух одинаковых. В 20-х годах XX века Эдвин Хаббл разделил галактики на три основных типа: спиральные (S), эллиптические (Е) и неправильные (Irr). В неправильные попали все галактики, которые не удалось причислить ни к спиральным, ни к эллиптическим.
Рассмотрим – в самом общем приближении – механизм формирования галактики. Мы увидим, что наша Галактика (часто называемая Млечным Путем) не зря относится к S-галактикам. Будь она Е-галактикой, в ней вряд ли могли бы образоваться в достаточном количестве планеты земной группы, а следовательно, вероятность возникновения жизни, тем более разумной, была бы малой, чтобы не сказать ничтожной.
Эллиптические галактики (рис. 1 на цветной вклейке) представляют собой более или менее сплюснутые сфероиды, состоящие из большого количества звезд – от десятков миллионов для карликовых Е-галактик до триллиона для сверхгигантских Е-галактик. Степень сжатия Е-галактик характеризуется цифровым индексом за буквой Е – от Е0 для сферических галактик до Е7 для сильно сжатых. Эллиптических галактик, более сжатых, чем Е7, не существует. Если галактика сжата сильнее, в ней уже образуются спиральные рукава, что выводит галактику из типа Е. Само собой, речь идет о реальном сжатии, а не о кажущемся, вызванном положением наблюдателя относительно галактики. В целом Е-галактики довольно невыразительны и в большинстве своем похожи друг на друга.