Литмир - Электронная Библиотека

Весной 1972 года в Москву с Крымской станции ГАИШ приехал Витя Лютый (он постоянно там работал). Витя показал мне свои UBV фотоэлектрические наблюдения звезды – оптической компоненты рентгеновского источника Cyg X-1. Он пытался определить по своим данным орбитальный период системы Cyg X-1, но из‑за немногочисленности наблюдательных точек это ему не удавалось сделать. Буквально на следующий день, войдя в зал библиотеки ГАИШ (я каждый день туда заходил, чтобы посмотреть новости, – тогда интернета еще не было), я увидел на выставке свежий номер журнала Nature. На обложке этого журнала красовалась картинка с кривой лучевых скоростей системы Cyg X-1 и крупными буквами было написано: Cyg X-1 – двойная система. Это была реклама знаменитой статьи английских ученых Л. Вебстер и П. Мардина, содержащейся в этом номере журнала. В этой статье авторы, выполнив спектральные наблюдения оптической звезды в системе Cyg X-1, измерили ее лучевую скорость и обнаружили, что она переменна с периодом ~ 5,6 суток и полуамплитудой ~ 70 км/с. Это прямо свидетельствовало о том, что оптическая звезда в системе Cyg X-1 вращается вокруг невидимого в оптическом диапазоне спектра и весьма массивного объекта. Я срочно информировал Витю Лютого об этой статье и о значении орбитального периода 5,6 суток. Обработав свои наблюдения с этим периодом, Витя получил хорошую регулярную кривую блеска, которая, в отличие от системы HZ Her, представляла собой двойную волну за орбитальный период с весьма небольшой амплитудой, примерно 5% от среднего значения (пять сотых звездной величины). Витя пришел в восторг от этих результатов и предложил мне быть соавтором соответствующей статьи. Но я отказался, так как мой вклад в эту работу был не очень велик. Мы договорились, что Витя в этой статье выразит мне благодарность за обсуждение работы, а также передаст мне таблицу своих фотометрических наблюдений системы Cyg X-1 для дальнейшего анализа. Этот анализ мы выполнили вдвоем с Рашидом Алиевичем Сюняевым, аспирантом Я. Б. Зельдовича, который тогда руководил отделом в Институте прикладной математики (ИПМ) АН СССР. После того как Яков Борисович одобрил нашу статью по эффекту отражения в системе HZ Her, мы старались больше общаться с ним и учениками. Яков Борисович в то время увлекался релятивистской астрофизикой (точнее, был одним из ее создателей), и его большой мечтой было открыть черную дыру. Поэтому он живо интересовался исследованиями рентгеновских двойных систем. А для нас, молодых астрономов, его экспертиза наших результатов была очень важной и полезной.

Надо особо отметить, что приход Якова Борисовича в астрофизику буквально осветил новым светом многие, казалось бы, уже изученные и ставшие классическими области этой науки. В частности, в проблеме физики звезд Яков Борисович развил новый аспект – поздние стадии эволюции звезд и формирование нейтронных звезд и черных дыр.

Наша схема рассуждений с Рашидом Сюняевым была следующей (в узком кругу мы зовем друг друга по имени ввиду многолетних дружеских отношений). Функция масс оптической звезды в системе Cyg X-1, измеренная Вебстер и Мардином, составляет 0,2 солнечной массы. То есть масса релятивистского объекта (рентгеновского источника) превышает 0,2 солнечной массы (функция масс оптической звезды в рентгеновской двойной системе является абсолютным нижним пределом для массы рентгеновского источника). Это очень малое значение нижнего предела массы релятивистского объекта. Оно не позволяет судить о том, является ли релятивистский объект нейтронной звездой или черной дырой. Нужны дополнительные ограничения на значения наклонения орбиты i в системе и на отношение масс компонент

Моя жизнь в астрономии - imgbb31959bfe0e47ad83fdebb9f1190cc6.jpg

где mx – масса рентгеновского источника, mv – масса оптической звезды. Особенно сильно окончательная оценка величины mx зависит от наклонения орбиты i. Величину i можно оценить, если двойная система является затменной системой, в этом случае i близко к 90°. Однако при таких значениях i масса релятивистского объекта, оцениваемая по функции масс, получается около одной солнечной, что характерно для нейтронных звезд. Но тогда почему источник Cyg X-1 не является рентгеновским пульсаром? Тем более что, согласно теории дисковой аккреции Шакуры–Сюняева, оптическая светимость аккреционного диска должна быть относительно малой и оптические затмения в системе Cyg X-1 даже при i ≈ 90° должны иметь малую глубину, менее 1%. А кривая блеска системы Cyg X-1 имеет вид двойной волны за период амплитудой ~ 5%. Это позволило нам заключить, что главной причиной оптической переменности системы Cyg X-1 является эффект эллипсоидальности оптической звезды, которая является горячей массивной звездой спектрального класса B0Ib и для которой, ввиду ее высокой оптической светимости, эффект рентгеновского прогрева является несущественным. Эффект эллипсоидальности связан с приливной деформацией оптической звезды в гравитационном поле релятивистского объекта. В результате этой деформации звезда становится эллипсоидальной и даже грушевидной. Орбитальное движение оптической звезды в этом случае приводит к характерной переменности блеска, имеющей вид двойной волны: два максимума и два минимума за период, что как раз и наблюдается в системе Cyg X-1. Используя приближенную теорию эффекта эллипсоидальности, развитую в работах Г. Рассела, С. Чандрасекара, Д. Я. Мартынова, я по амплитуде оптической переменности системы Cyg X-1 оценил наклонение орбиты для этой системы, которое оказалось значительно меньше 90°. С этим значением i у нас получилась оценка массы релятивистского объекта mx > 5,6 солнечной массы, что заведомо превышало значение 3 М, абсолютный верхний предел масс нейтронных звезд. Поэтому мы сделали вывод о том, что рентгеновский источник в системе Cyg X-1 является черной дырой. Все эти результаты летом 1972 года мы доложили на семинаре отдела Я. Б. Зельдовича в ИПМ. Яков Борисович решительно поддержал нашу работу и рекомендовал доложить ее на ОАС. Через некоторое время мы доложили эту работу на Объединенном астрофизическом семинаре в ГАИШ. Это было мое первое выступление на ОАС. В конференц-зале ГАИШ сидели ведущие физики, астрофизики и астрономы страны. Я волновался, когда докладывал нашу работу, но доклад прошел успешно. Яков Борисович попросил Соломона Борисовича Пикельнера (он тогда был ответственным секретарем редакции «Астрономического журнала») опубликовать нашу статью вне очереди в «Астрономическом журнале». При поддержке Соломона Борисовича статья была опубликована в ближайшем номере «Астрономического журнала» в начале 1973 года. Авторы статьи: В. М. Лютый, Р. А. Сюняев, А. М. Черепащук. Кроме того, Рашиду удалось организовать через ИПМ публикацию препринта нашей статьи на английском языке. Этот препринт мы срочно разослали в ведущие мировые астрономические центры. В итоге эта статья быстро завоевала популярность, и на нее в течение последующих пяти лет шли непрерывные ссылки в международных журналах.

Кстати, почти одновременно с нашей публикацией вышла статья английского астрофизика Уокера, где он интерпретировал оптическую переменность системы Cyg X-1 как затменную переменность и сделал вывод о том, что релятивистский объект в системе Cyg X-1 является нейтронной звездой. Все последующие исследования подтвердили нашу модель системы Cyg X-1 и нашу оценку массы черной дыры. Таким образом, нам удалось выполнить одну из первых оценок массы черной дыры в рентгеновской двойной системе.

Эффекты отражения и эллипсоидальности, впервые обнаруженные нами в системах HZ Her и Cyg X-1, оказались типичными оптическими проявлениями рентгеновских двойных систем. Они широко используются при оптических отождествлениях рентгеновских двойных систем и при определении масс нейтронных звезд и черных дыр. Забегая вперед, отметим, что число открытых рентгеновских двойных систем к настоящему времени перевалило за многие тысячи, а число определений масс черных дыр в рентгеновских двойных системах превышает три десятка. В большинстве этих определений масс черных дыр для нахождения наклонения орбиты системы используется впервые предложенный нами метод анализа эффекта эллипсоидальности оптической звезды.

21
{"b":"921358","o":1}