* управляемые рекуррентные нейроны (GRU).
Основы для написания сетей.
До 2015 года с большим отрывом лидировала scikit–learn, которую догонял Caffe, но с выходом TensorFlow он сразу стал лидером. Со временем только набирая отрыв с двухкратного на трёхкратный к 2020 году, когда на GitHub набралось более 140 тысяч проектов, а у ближайшего конкурента чуть более 45 тысяч. На 2020 году по убывающей расположились Keras, scikit–learn, PyTorch (FaceBook), Caffe, MXNet, XGBoost, Fastai, Microsoft CNTK (CogNiive ToolKit), DarkNet и ещё некоторые менее известные библиотеки. Наиболее популярными для отрытых проектов на GitHub можно выделить библиотеку PyTorch и TenserFlow. Если смотреть на количество звёздочек на GitHub по библиотекам, то на 2020 год тысяч звёздочек:
* TenserFlow: 153 * Keras: 51 * PyTorch: 46 * Sckit-learn: 45 * Caffe: 31 * MXNet: 19 * CNTK: 17 * Theane: 9 * Caffe2: 8
PyTorch хорошо для прототипирования, изучения и испробования новых моделей. TenserFlow популярен в производственной среде, а проблема низкого уровня описания решается с помощью Keras:
* FaceBook PyTorch – хороший вариант для обучения и прототипирования из–за высокого уровня и поддержки различных сред, динамический граф, может дать преимущества при обучении. Используется в Twitter, Salesforce.
* Google TenserFlow – имел изначально статический граф решения, ныне поддерживается и динамический. Используется в Gmail, Google Translate, Uber, Airbnb, Dropbox. Для привлечения использования в облаке Google под него внедряется аппаратный процессор Google TPU (Google Tensor Processing Unit).
* Keras является высокоуровневой настройкой, обеспечивающей больший уровень абстракции для TensorFlow, Theano или CNTK. Хороший вариант для обучения. К примеру, он позволяет не указывать размерность слоёв, вычисляя её сам, позволяя разработчику сосредоточиться на слоях архитектуры. Обычно используется поверх TenserFlow. Код на нём поддерживается Microsoft CNTK.
Так же имеются более специализированные фреймворки:
* Apache MXNet (Amazon) и высокоуровневая надстройка для него Gluon. MXNet – фреймворк с акцентом на масштабирование, поддерживает интеграцию с Hadoop и Cassandra. Поддерживается C++, Python, R, Julia, JavaScript, Scala, Go и Perl.
* Microsoft CNTK имеет интеграции с Python, R, C#, благодаря тому что большая часть кода написана на С++. То, что вся основа написана на С++, не говорит о том, что CNTK будет обучать модель на C++, а TenserFlow на Python (который медленный), так как TenserFlow строит графы и уже его выполнение осуществляется на C++. Отличается CNTK от Google TenserFlow и тем, что он изначально был разработан для работы в кластерах Azure с множеством графических процессоров, но сейчас ситуация выравнивается и TenserFlow поддерживает кластера.
* Caffe2 – фреймворк для мобильных сред.
* Sonnet – надстройка DeepMind поверх TensorFlow для обучения сверх глубоких нейронных сетей.
* DL4J (Deep Learning for Java) – фреймворк с акцентом на Java Enterprise Edition. Высока поддержка BigData на Java: Hadoop и Spark.
Со скоростью доступности новых предобученных моделей ситуация разнится и пока лидирует PyTorch. По поддержке сред, в частности публичных облаков, лучше у Фреймворках, продвигаемых вендерами этих облаков, так лучше поддержка TensorFlow лучше в Google Cloud, MXNet – в AWS, CNTK – в Microsoft Azure, D4LJ – в Android, Core ML – в iOS. По языкам общая поддержка в Python практически у всех, в частности TensorFlow поддерживает JavaScript, C++, Java, Go, C# и Julia.
Многие фреймворки поддерживают визуализацию TeserBodrd. Он представляет собой комплексный Web интерфейс многоуровневой визуализации состояния и процесса обучения и его отладки. Для подключения нужно указать путь к модели "tenserboard –logdir=$PATH_MODEL" и открыть localhost:6006. Управление интерфейсом основано на навигации по графу логических блоков и открытию интересующих блоков, для последующего повторения процесса.
Для экспериментов нам понадобится язык программирования и библиотека. Часто в качестве языка берут простой язык с низким порогом входа, такой как Python. Могут быть также и другие языки общего назначения, такие как JavaScript или специализированные, такие как язык R. Мы возьмём Python. Для того чтобы не ставить язык и библиотеки, воспользуемся бесплатным сервисом colab.research.google.com/notebooks/intro.ipynb, содержащим Jupyter Notebook. Notebook содержит в себе возможность не просто писать код с комментариями в консольном виде, а оформлять его в виде документа. Испробовать возможности Notebook можно в учебном плейбуке https://colab.research.google.com/notebooks/welcome.ipynb, такие как оформление текста на языке разметки MD, с формулами на языке разметки TEX, запуск скриптов на языке Python, вывод результатов их работы в текстовом виде и в виде графиков, используя стандартную библиотеку Python: NumPy(НамПай), matplotlib.pyplot. Сам Сolab представляет графическую карту Tesla K80 на 12 часов за раз (на сессию) бесплатно. Она поддерживает различные фреймворки глубокого машинного обучения, в том числе, Keras, TenserFlow и PyTorch. Цена же составляет GPU в Google Cloud:
Tesla T4: 1GPU 16GB GDDR6 0.35$/час Tesla P4: 1GPU 8GB GDDR5 0.60$/час Tesla V100: 1GPU 16GB HBM2 2.48$/час Tesla P100: 1GPU 16GB HBM2 1.46$/час
Попробуем. Перейдём по ссылке colab.research.google.com и нажмём кнопку "создать блокнот". У нас появится пустой Notebook. Можно ввести выражение:
10**3 / 2 + 3
и нажав на воспроизведение – получим результат 503.0. Можно вывести график параболы, нажав кнопку "+Код" в введя в новую ячейку код:
def F(x): return x*x import numpy as np import matplotlib.pyplot as plt x = np.linspace(–5, 5, 100) y = list(map(F, x)) plt.plot(x, y) plt.ylabel("Y") plt.xlabel("X")
Или выведя ещё и изображение:
import os !wget https://www.python.org/static/img/python–logo.png import PIL img = PIL.Image.open("python–logo.png") img
Популярные фреймворки:
* Caffe, Caffe2, CNTK, Kaldi, DL4J, Keras – набор модулей для конструирования;
* TensorFlow, Theano, MXNet – программирование графа;
* Torch и PyTorch – прописать основные параметры, а граф будет построен автоматически.
Рассмотрим работу библиотеки PyTorch (NumPy+CUDA+Autograd) из–за её простоты. Посмотрим на операции с тензорами – многомерными массивами. Подключим библиотеку и объявим два тензора: нажмём +Code, введём код в ячейку и нажмём выполнить:
import torch a = torch.FloatTensor([ [1, 2, 3], [5, 6, 7], [8, 9, 10] ]) b = torch.FloatTensor([ [–1, –2, –3], [–10, –20, –30], [–100, –200, –300] ])
Поэлементные операции, такие как "+", "–", "*", "/" над двумя матрицами одинаковых габаритов производят операции с соответствующими их элементами:
a + b tensor([ [ 0., 0., 0.], [ –5., –14., –23.], [ –92., –191., –290.] ])
Другим вариантом поэлементной операции является применение одной операции ко всем элементом по одиночке, например умножение на –1 или применение функции:
a tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ]) a * –1 tensor([ [ –1., –2., –3.], [ –5., –6., –7.], [ –8., –9., –10.] ]) a.abs() tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ])
Также имеются операции свёртки, такие как sum, min, max, которые на входе дают сумму всех элементов, самый маленький или самый большой элемент матрицы:
a.sum() tensor(51.) a.min() tensor(1.) a.max() tensor(10.)
Но нам будут больше интересны постолбцовые операции (операция будет производиться над каждым столбцом):
a.sum(0) tensor([14., 17., 20.]) a.min(0) torch.return_types.min( values=tensor([1., 2., 3.]), indices=tensor([0, 0, 0]) ) a.max(0) torch.return_types.max( values=tensor([ 8., 9., 10.]), indices=tensor([2, 2, 2]) )
Как мы помним, нейронная сеть состоит из слоёв, слои состоят из нейронов, а нейрон содержит на входе связи с весами в виде простых чисел. Вес задаётся обычным числом, тогда входящие связи в нейрон можно описать последовательностью чисел – вектором (одномерным массивом или списком), длина которого и есть количество связей. Так как сеть полносвязная, то все нейроны этого слоя связаны с предыдущим, а, следовательно, демонстрирующие их вектора имеют тоже одинаковую длину, создавая список равных по длине векторов – матрицу. Это удобное и компактное представление слоя, оптимизированное для использования на компьютере. На выходе нейрона имеется функция активации (сигмойда или, ReLU для глубоких и сверхглубоких сетей), которая определяет, выдаст на выходе нейрон значение или нет. Для этого необходимо применить её к каждому нейрону, то есть к каждому столбцу: мы уже видели операцию к столбцам.