Литмир - Электронная Библиотека
A
A

3 Cohen S. N. et al. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. 1973; 70: 3240–3244.

4 Culliton B. J. Recombinant DNA: Cambridge City Council votes moratorium. Science. 1976; 193: 300–301.

5 Hughes S. S. Genentech: The Beginnings of Biotech (reprint ed.). Chicago: University of Chicago Press, 2013; Mukherjee S. The Gene: An Intimate History. New York: Scribner, 2016.

6 Nielsen J. Production of biopharmaceutical proteins by yeast. Bioengineered. 2013; 4: 207–211.

7 Behringer R. et al. Manipulating the Mouse Embryo: A Laboratory Manual (4th ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2013.

8 Tzfira T., et al. Agrobacterium T-DNA integration: Molecules and models. Trends in Genetics 20, 375–383 (2004).

9 Micronutrient deficiencies: Vitamin A deficiency. World Health Organization. 2009 (https://www.who.int/data/nutrition/nlis/info/vitamin-a-deficiency).

10 Ye X. et al. Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000; 287: 303–305.

11 Researchers determine that golden rice is an effective source of vitamin A. American Society of Nutrition. 2009 (http://www.goldenrice.org/PDFs/ASNonGR.pdf); Tang G. et al. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 2009; 89: 1776–1783. Массу информации о золотом рисе, в том числе подробное описание его генетики и результаты его проверки на безопасность, можно найти в Golden Rice Humanitarian Board. Golden Rice Project (http://www.goldenrice.org/).

12 Regis E. Golden Rice: The Imperiled Birth of a GMO Superfood. Baltimore: Johns Hopkins University Press, 2019; Regis E. The true story of the genetically modified superfood that almost saved millions. Foreign Policy. 2019; October 17 (https://foreignpolicy.com/2019/10/17/golden-rice-genetically-modified-superfood-almost-saved-millions/).

13 Stokstad E. After 20 years, golden rice nears approval. Science. 2019; 366: 934–934.

14 Gaj T. et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013; 31: 397–405.

15 Ishino Y. et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology. 1987; 169: 5429–5433.

16 Mojica F. J. M. et al. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology. 1993; 9: 613–621.

17 Mojica F. J. M. et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005; 60: 174–182; Pourcel C. et al. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151: 653–663; Bolotin A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005; 151: 2551–2561.

18 Ledford H. Five big mysteries about CRISPR's origins. Nature News. 2017; 541: 280; Sorek R. et al. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry. 2013; 82: 237–266.

19 Palermo G. et al. The invisible dance of CRISPR-Cas9. Physics Today. 2019; 72: 30–36; CRISPR: Gene editing and beyond. Nature Video. 2017 (https://youtu.be/4YKFw2KZA5o); Jiang F., Doudna J. A. CRISPR – Cas9 structures and mechanisms. Annual Review of Biophysics. 2017; 46: 505–529. Эту статью сопровождает информативная компьютерная анимация структурных изменений Cas9, доступная на платформе YouTube: https://www.youtube.com/watch?v=XAtZEIyzd7g, https://www.youtube.com/watch?v=YaXoom7YAY.

20 О ранней истории CRISPR: Campbell M. Francis Mojica: The modest microbiologist who discovered and named CRISPR. Genomics Research from Technology Networks. 2019; October 14 (https://www.technologynetworks.com/genomics/articles/francis-mojica-the-modest-microbiologist-who-discovered-and-named-crispr-325093); Ishino Y. et al. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology. 2018; 200: e00580-17; Lander E. S. The heroes of CRISPR. Cell. 2016; 164: 18–28. Последняя статья вызывает немало споров – см., например: Vence T. «Heroes of CRISPR» disputed. Scientist Magazine. 2016; January 19 (https://www.the-scientist.com/news-opinion/heroes-of-crispr-disputed-34188) и Morange M. Why Eric Lander's controversial paper «The Heroes of CRISPR» is not solid historical research. American Scientist. 2016; February 17 (https://www.americanscientist.org/blog/macroscope/why-eric-lander%E2 %80 %99s-controversial-paper-%E2 %80 %9Cthe – heroes-of-crispr%E2 %80 %9D-is-not-solid-historical).

21 Jinek M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816–821.

22 Zimmer C. CRISPR natural history in bacteria. Quanta Magazine. 2015; February 6 (https://www.quantamagazine.org/crispr-natural-history-in-bacteria-20150206/).

23 Gasiunas G. et al. Cas9 – crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS. 2012; 109: E2579 – E2586.

24 Begley S. Who gets credit for CRISPR? Prestigious award singles out three. STAT. 2018; May 31 (https://www.statnews.com/2018/05/31/crispr-scientists-kavli-prize-nanoscience/); Bichell R. Science rewards eureka moments, except when it doesn't. NPR.org. 2016; November 2 (https://www.npr.org/sections/health-shots/2016/11/02/500331130/science-rewards-eureka-moments-except-when-it-doesn't); Guglielmi G. Million-dollar Kavli Prize recognizes scientist scooped on CRISPR. Nature. 2018; 558: 17–18.

25 Cong L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339: 819–823; Mali P. et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339: 823–826.

26 Anzalone V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576: 149–157; Ledford H. Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature. 2019; 574: 464–465.

27 Zsögön A. et al. De novo domestication of wild tomato using genome editing. Nature Biotechnology. 2018; 36: 1211–1216.

28 Tebas P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. New England Journal of Medicine. 2014; 370: 901–910.

29 Reardon S. Leukaemia success heralds wave of gene-editing therapies. Nature News. 2015; 527: 146.

30 Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020; 579: 185–185; Maeder M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature Medicine. 2019; 25: 229–233.

31 Bondy-Denomy J. et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013; 493: 429–432; Dolgin E. The kill-switch for CRISPR that could make gene-editing safer. Nature. 2020; 577: 308–310.

72
{"b":"915404","o":1}