Недавно было показано, что птицы способны к использованию символов для обозначения числа элементов в небольших множествах (Xia et al., 2000). Голубям в камере Скиннера предлагали ключ с изображением одного из 6-ти абстрактных символов (A, N, T, 4, U, 5). Этот ключ экспериментаторы назвали «символическим». Рядом располагался «пусковой» ключ (enter). Каждый символ, по условию задачи, соответствовал определенному числу клевков. Голуби получали награду только в том случае, если они совершали нужное число клевков по символическому ключу (в соответствии с показанным символом), а последний клевок нужно было сделать по пусковому ключу (нажать enter). После долгой тренировки 6 птиц смогли запомнить и аккуратно проделывать число клевков, соответствующее пяти символам, а 5 из них — шести.
Четыре ноги
Он, казалось, был чем-то удивлен. Глаза его возвращались к моим рукам. Он вытянул свою руку и стал медленно считать свои пальцы.
Герберт Уэллс «Остров доктора Моро».
Первые опыты, выявляющие способность к счету у четвероногих, были проведены на макаках резусах А. Киннаманом (Kinnaman, 1902). Он ставил в ряд 21 сосуд, из которых только один содержал лакомство, и тренировал двух обезьян выбирать 4-й сосуд от конца, затем 2-й, 5-й, 1-й, 9-й, 11-й, 8-й, 3-й, 10-й, 7-й, в нужной очередности. Одна из обезьян справлялась с заданием легко и после небольшого числа тренировок отличала позиции, вплоть до шестой. Вторая тренировалась долго и научилась искать нужный сосуд лишь до третьей с краю позиции. Для сравнения Киннаман тестировал детей трех и пяти лет, используя в качестве награды мраморные шарики для игры. Старший ребенок показал те же результаты, что и «отстающая» обезьяна, младший отыскивал шарики только в первом и во втором с краю сосудах. Эта методика и ее модификации применялись позднее к исследованию животных разных видов. Шимпанзе продемонстрировали очень большие индивидуальные различия в способностях решать такую задачу как открывание второй дверцы с дальнего конца ряда. Некоторые из них так и не справлялись с этой задачей, хотя ее успешно решали еноты, куницы, скунсы и домашние свиньи (см. обзор: Boysen, Hallberg, 2000).
В течение многих лет способности обезьян к оценке количества предметов исследовали с помощью метода выбора по образцу и висконсинского теста сортировки карточек. Ограниченной оказалась не столько компетенция животных, сколько возможность самого метода. Требовались сотни, а иногда и тысячи повторений для того, чтобы, скажем, научить обезьян, крыс и енотов отличать карточки с двумя и с одним кружками (Capaldi, Miller, 1988; Davis, Memmott, 1982).
В то же время использование тестов возрастной психологии позволило выявить у антропоидов неплохо развитые понятия о соотношении пропорций и объемов. Так, Вудруфф и Премак (Woodruff, Premack, 1981) применяли к четырем молодым и одному взрослому шимпанзе тест, разработанный Пиаже для определения возрастных изменений в суждениях о соотношении пропорций и объемов. Испытуемым предлагались стаканы, заполненные водой на 25%, 50%, 75% и 100%, и кружки, соответственно зачерненные на 25-100%. Они получали вознаграждение, если им удавалось привести в соответствие пропорции и объемы, то есть накрыть на четверть наполненный стакан — на четверть зачерненным кружком. Дети хорошо справляются с этим и подобными тестами в возрасте около четырех лет. Среди подопытных обезьян только взрослая справлялась с заданием, и делала это достаточно хорошо.
Существенно расширили знания о том, как животные оперируют количественными признаками предметов, опыты, проведенные с низшими обезьянами в лаборатории когнитивной приматологии Колумбийского Университета. Элизабет Бреннон и руководитель лаборатории Герберт Террейс выяснили, что макаки-резусы могут располагать картинки с разным количеством предметов по возрастанию и убыванию; более того, они способны переносить навыки, полученные при оперировании с последовательностью из меньшего числа предметов на последовательность из большего их количества (Brannon, Terrace, 1998). В качестве основы исследователи использовали метод серийного обучения, ранее разработанный Террейсом. В опытах участвовали макаки со звучными именами Розенкранц и Макдуф. На экране монитора обезьяны видели мелкие предметы (зайчики, сердечки, квадратики и т. п.), расположенные группами, от 1 до 10 предметов. В одном из экспериментов от обезьян требовалось, чтобы они дотрагивались на экране до групп предметов в порядке возрастания их количества в группе (один кружок — два кружка — три кружка — четыре кружка). При этом в каждой пробе варьировали как сами фигурки, так и местоположение групп предметов на экране, например, если в первой пробе один кружок находился посреди экрана, группа из двух — в правом верхнем углу, а группа из трех — в левом нижнем, то в следующей пробе одна уточка находилась в правом нижнем углу, две точки — в центре экрана, три — в левом нижнем углу и т. п. Кроме того, варьировали и относительные размеры фигурок, чтобы животные ориентировались именно по их количеству, а не по площади, занимаемой группой предметов. На тренировочном этапе макакам предъявляли 35 разных стимулов, по 60 раз каждый. На этапе «экзаменов» им демонстрировали 150 новых стимулов, показывая каждый только по одному разу (проводилось 5 серий по 30 тестов). Правильные действия поощрялись кусочком лакомства, ошибки «наказывались» тем, что экран на несколько минут гас. Розенкранц и Макдуф продемонстрировали способность «нумеровать» предметы от 1 до 4 и затем успешно переносить этот навык на последовательность с 5 до 9. В другом эксперименте они должны были «нумеровать» предметы в возрастающей последовательности, а затем переучиваться на последовательность убывающую, то есть, сначала 1-2-3-4, а затем 4-3-2-1.
В сходной ситуации шимпанзе научились использовать арабские цифры, то есть символы для обозначения числа элементов в предъявляемых им множествах. Т. Матсузава (Matsuzawa, 1985) воспитал математически одаренную шимпанзе Аи, названную так по первым буквам Artificial Intelligence (искусственный интеллект), с целью «противопоставления» успехов живого зверя достижениям роботов. Исследователь научил Аи устанавливать различия между группами картинок на экране и арабскими цифрами от 1 до 7. Результаты выбора Аи не зависели от размера, цвета, формы и взаиморасположения элементов в группах.
Сара Бойзен и ее коллеги разработали метод, который позволил, постепенно наращивая сложность заданий, показать, что шимпанзе способны не только оценивать, пересчитывать и обозначать число объектов, но и совершать элементарные арифметические действия (Boysen, Berntson, 1989, Boysen et al., 1993; Boysen, Hallberg, 2000). Шимпанзе Шебу научили практически всем элементам «истинного счета». Сначала обезьяну обучили класть только одну конфету в каждый из шести отсеков специального подноса. Ей демонстрировали соответствие «один к одному» между числом отсеков и числом конфет. На следующем этапе в ответ на предъявление подноса с одной, двумя и тремя конфетами Шеба должна была выбрать одну из трех магнитных карточек с изображением такого же числа кружков. При верном соответствии числа кружков и конфет шимпанзе позволяли съесть конфеты. Потом на одной, двух и наконец на всех трех карточках кружки заменяли соответствующими арабскими цифрами. Когда Шеба стала безошибочно выбирать все три цифры, соответствующие числу конфет на подносе, обезьяне стали показывать цифры на мониторе. Теперь она должна была в соответствие каждой цифре выбрать карточку с изображением точек, то есть применить символы к обозначению уже других элементов — не конфет, а точек. Так Шеба освоила символы от 0 до 7.
В одном из экспериментов Шеба научилась даже складывать цифры. На первом этапе по двум из трех тайников раскладывали апельсины таким образом, чтобы их в сумме было не больше четырех. Обезьяна обходила все три тайника и видела апельсины, но не могла их достать. Затем она должна была подойти к площадке с разложенными на ней карточками и выбрать цифру, соответствующую числу увиденных апельсинов. После этого плоды поступали в ее распоряжение. На втором этапе апельсины заменили карточками с цифрами (1 и 0,1 и 1, 1 и 2,1 и 3, 2 и 0 и 2 и 2). Шеба обходила тайники и затем находила карточку с цифрой, соответствующей сумме. В первой же серии испытаний она выбирала правильную цифру в достоверном большинстве случаев.