Посмотрите, что получается. Применяя оператор РВС, мы словно нарочно усложняем задачу, но решение ее облегчается! Происходит это потому, что оператор РВС помогает нам избавиться от психологической инерции и взглянуть на задачу непредвзято.
Задача 37. Следствие ведут знатоки
— Нужно проверить это ружье, — сказал следователь и положил на стол эксперта охотничью двухстволку. — Мне надо выяснить, стреляли из этого ружья неделю назад или не стреляли?
Эксперт внимательно осмотрел ружье и покачал головой.
— Не знаю, как подойти к задаче. Ружье вычищено, нагара нет…
И тут появился изобретатель.
— А я знаю, — сказал он. — Обратимся к оператору РВС.
Предположим, выстрел произошел день назад… час назад… пять минут назад. По условиям задачи, нагара в стволе нет. Но если выстрел произошел минуту назад, ствол будет чуть-чуть теплее, чем обычно. А если стреляли десять секунд назад — еще теплее. Значит, можно даже с закрытыми глазами сказать, стреляли из ружья или нет. Правда, «температурная память» металла очень уж коротка…
Хорошо, поищем у металла какую-нибудь другую «память». Какие свойства стали меняются при выстреле? Вспомните, задачу 27 об обогреве проводов. При нагревании выше точки Кюри сталь размагничивается. Исчезают магнитные свойства и при ударе. Пороховые газы бьют не только по пуле, но и по стволу. Обычно ствол намагничен (хотя и слабо): на него действует магнитное поле Земли. Выстрел — и ствол мгновенно размагничивается. За три-четыре недели намагниченность восстанавливается. Чем больше времени прошло после выстрела, тем ближе к «норме» намагниченность ружья. Достаточно сравнить намагниченность двух ружей, чтобы определить, из какого стреляли, скажем, неделю назад.
На этот раз оператор РВС помог пройти полдороги к ответу: подсказал идею «температурной памяти», а чтобы перейти к «магнитной памяти», пришлось вспомнить физику. Так бывает часто. Оператор РВС дает намек, подсказку, а дальше надо сформулировать ИКР, найти физическое противоречие, использовать правила вепольного анализа и физику.
Попробуем теперь применить оператор РВС к задаче 35. Диаметр роликов уменьшается… Ролики в десять раз, в сто раз тоньше волоса… Построить конвейер с такими роликами невообразимо трудно. Но мы ведем мысленный эксперимент, чего же нам бояться? Пусть ролики станут еще более тонкими — как молекула. Будем растягивать молекулу. Минимальная толщина — один атом, потом молекула порвется… Стеклянная лента движется по слою шариков-атомов. Отличный был бы конвейер, идеально ровный!
Подсказка есть, воспользуемся ею. Под стеклянную ленту надо «насыпать» шарики-атомы. Это не атомы газа — те сразу разбегутся, улетучатся. И не атомы твердого тела — они не будут свободно двигаться. Остается одна возможность — использовать атомы жидкости. Раскаленная стеклянная лента свободно катится по поверхности жидкости — идеальный конвейер…
Какую жидкость взять для такого конвейера?
Не будем искать наугад. Шерлок Холмс, великолепно понимавший значение организованного, направленного мышления, сказал как-то: «Я никогда не гадаю. Очень дурная привычка: действует гибельно на способность логически мыслить». Учтем это и поищем нужную жидкость строго логически.
Прежде всего, нам нужна жидкость легкоплавкая. Далее, у жидкости должна быть высокая температура кипения, иначе она закипит и поверхность ленты станет волнистой. Удельный вес жидкости должен значительно превышать удельный вес стекла (2,5 г/см3), иначе стеклянная лента не будет держаться на ее поверхности.
Итак, искомое вещество имеет:
температуру плавления не выше 200―300°;
температуру кипения не ниже 1500°
удельный вес не меньше 5―6 г/см3
Таким сочетанием свойств обладают только металлы. Если не брать во внимание редкие металлы, претендентов совсем мало: висмут, олово, свинец… Висмут дорог, пары свинца ядовиты, остается олово. Итак, вместо конвейера — длинная ванна с расплавленным оловом. Вместо роликов и шариков — атомы. Система перешла на микроуровень, появилась возможность дальнейшего развития. И действительно: сразу после этого изобретения потоком пошли патенты на различные усовершенствования.
Например, если через олово пропустить ток, то с помощью магнитов можно перемещать олово, придавать его поверхности любую форму — только на эту тему сделано несколько сот изобретений…
А теперь попробуйте самостоятельно применить оператор РВС.
Задача 38. Нужна свежая идея
В одном институте разрабатывали проект не совсем обычного нефтепровода: по одним и тем же трубам должны были поочередно идти разные жидкости.
Чтобы жидкости не смешивались, их надо было разделить специальным устройством: течет первая жидкость, за ней шар, словно поршень, а за шаром другая жидкость.
— Ненадежно, — сказал руководитель проекта. — Давление в трубопроводе большое, десятки атмосфер. Жидкости будут просачиваться, смешиваться.
— Может быть, взять другие разделители? — спросил инженер и показал каталог завода, выпускающего дисковые разделители. В каталоге была картинка: по трубопроводу движется «пробка» из трех резиновых дисков.
— Они часто застревают, — возразил руководитель проекта. — А главная беда в том, что через каждые двести километров стоят насосные станции; подойдет разделитель к станции, надо его вытаскивать: через насос он не пройдет. Так что и шары и диски одинаково плохи. Нужен разделитель, способный проходить через насосы и гарантирующий, что жидкости не смешаются.
И тут появился изобретатель.
— Используем оператор РВС, — предложил он. — Нам ведь нужна свежая идея…
И свежая идея появилась. Как вы думаете — какая?
Примените первую же из шести операций — мысленное уменьшение размеров трубопровода.
Учтите, что идея разделить трубопровод продольной перегородкой не годится.
Нужно, чтобы по трубопроводу поочередно шли разные жидкости — и не смешивались…
Толпа маленьких-маленьких человечков
Оператор РВС сильный, но не единственный инструмент для преодоления психологической инерции. «Носителями» психологической инерции могут быть слова, в особенности специальные термины. Ведь термины существуют, чтобы точнее отражать то, что уже известно. А изобретатель должен выйти за пределы известного и тем самым сломать устоявшиеся представления, «охраняемые» терминами. Поэтому задачу — даже самую сложную! — надо пересказать «простыми словами».
Был такой случай. Моряк предложил задачу об увеличении скорости продвижения ледокола сквозь лед. Задачу решал у доски инженер, не имевший никакого отношения к морю. И на доске появилась такая запись: «Штуковина должна свободно проходить сквозь лед, словно его не существует». Я сидел рядом с моряком и слышал, как он возмущался: «Хулиганство какое-то… Почему ледокол — это штуковина?!» Но инженер поступил совершенно правильно. Ведь слово «ледокол» навязывает определенный путь решения: надо колоть, разрушать лед… А если научиться проходить сквозь лед, не ломая его? Поэтому «штуковина» — термин вполне уместный. Как «икс» в математике.
Кстати, «штуковина» и в самом деле оказалась непохожей на ледокол. Представьте себе корпус корабля, у которого вырезан средний слой, — тот слой, который находится на уровне льда. Или, скажем, десятиэтажный дом, у которого нет седьмого этажа. Корпус крупного ледокола как раз имеет высоту с десятиэтажный дом. Если одного этажа нет, лед (его толщина два-три метра) свободно пройдет сквозь отсутствующий этаж. И корабль сможет двигаться, не ломая лед.