Литмир - Электронная Библиотека
Содержание  
A
A

В 90-е гг., в связи со снижением стоимости микроэлектронных устройств, технология РЧИ начала активно внедряться на транспорте, в торговле. В это же время появились первые сообщения о проектах автоматизации библиотек на базе технологии РЧИ, реализованных компанией 3М (США).

В настоящее время технология РЧИ широко известна в мире и используется в самых различных областях деятельности, сфера её применения постоянно расширяется. Наиболее активно она используется в таких областях производственной деятельности, как складская и транспортная логистика, платежные, противокражные, охранные системы, системы контроля доступа в помещения и т. д. Все более широкое распространение эта технология получает и в библиотеках, как зарубежных, так и отечественных, где призвана заменить собой штриховое кодирование и расширить возможности автоматической идентификации в библиотечных системах автоматизации. Термины «электронный читательский билет» или «радиочастотная метка» давно уже знакомы и понятны как сотрудникам библиотек, так и их читателям.

§ 1.2. Основные виды устройств РЧИ

Технология РЧИ востребована и применяется во многих областях деятельности. В зависимости от области применения, оборудование РЧИ может иметь различные характеристики и особенности, отвечающие требованиям конкретной технологии и условиям использования идентификационных меток. Существующее многообразие типов меток можно классифицировать по ряду признаков. Рассмотрим некоторые из них, наиболее существенно определяющие условия их использования.

По наличию элемента питания метки бывают активные и пассивные.

Активные метки включают в себя автономный элемент питания, обеспечивающий работу её электронных модулей. Такие метки имеют большую дальность считывания, которая может составлять сотни метров, и допускают большую скорость перемещения метки относительно считывателя при обмене данными. К их недостаткам можно отнести ограниченный срок действия, который определяется в основном типом элемента питания, температурными условиями использования и, как правило, не превышает 10 лет. Кроме того, активные метки отличаются сравнительно большими размерами и большой стоимостью, что ограничивает их массовое использование. Примеры исполнения активных меток, применяемых в различных автоматизированных системах, показаны на рисунке 3.

По своим техническим возможностям такие метки похожи на системы распознавания «свой-чужой» и используются преимущественно в области транспортной логистики и в системах оплаты проезда по скоростным дорогам.

По своим техническим возможностям такие метки похожи на системы распознавания «свой-чужой» и используются преимущественно в области транспортной логистики и в системах оплаты проезда по скоростным дорогам.

Устройства радиочастотной идентификации в библиотечных технологиях - i_003.jpg

Рисунок 3 Активные метки РЧИ

Пассивные метки не имеют своего источника питания и получают энергию для работы электронных модулей из электромагнитного поля, создаваемого считывателем. Такие метки имеют сравнительно небольшую дальность действия, до 10 метров, но при этом они имеют значительно больший срок службы, который ограничивается только технологией их изготовления и может достигать 50 лет и более. Пассивные метки имеют меньшие размеры, которые определяются размерами антенны. Электронный модуль представляет собой интегральную микросхему, имеющую малые размеры и стоимость. Различные примеры исполнения пассивных радиочастотных меток показаны на рисунке 4.

Именно пассивные метки из-за своей низкой стоимости и большого срока службы обеспечили массовое использование технологии РЧИ для автоматической идентификации самых различных объектов в разных областях человеческой деятельности. Именно такие метки нашли широкое применение в библиотеках.

Устройства радиочастотной идентификации в библиотечных технологиях - i_004.jpg

Рисунок 4 Пассивные метки РЧИ

Системы РЧИ могут работать в нескольких частотных диапазонах. Рабочие диапазоны частот систем РЧИ законодательно определены на уровне государственных регламентов и международных соглашений. От выбора частотного диапазона существенно зависят технические характеристики меток и, как следствие, преимущественные области применения меток того или иного типа. От частоты сигнала зависят физические свойства электромагнитных волн и такие характеристики считывателей как проникающая способность, направленность их излучения, что определяет возможную дальность считывания метки, а также условия безопасности персонала, находящегося рядом с активной антенной устройства РЧИ.

По частотному диапазону пассивные метки РЧИ подразделяются на:

– НЧ (LF) – низкочастотный диапазон (125–134 кГц),

– ВЧ (HF) – высокочастотный диапазон (13,56 МГц),

– СВЧ (UHF) – сверхвысокочастотный диапазон (860–960 МГц),

– МВЧ (SHF) – микроволновый диапазон (2,4 ГГц).

Свойства электромагнитных волн в различных диапазонах определяют дальность действия, и проникающую способность рабочего поля считывателей РЧИ, что, в свою очередь, определяет способ связи между считывателем и меткой, а также конструкцию антенн, используемых в оборудовании.

Системы МВЧ диапазона имеют наибольшую дальность действия – обычно ~10 м, но для некоторых систем с активными метками дальность действия может доходить до 200 м.

Системы СВЧ диапазона также имеют большую дальность действия, обычно 5–10 м, что сопоставимо с дальностью действия систем микроволнового диапазона.

Системы ВЧ диапазона работают на дальностях до 1 м, что существенно меньше по сравнению с системами СВЧ и МВЧ (см. п. Б.1 приложения Б), но во многих случаях бывает достаточно для автоматизации различных технологических операций, связанных с идентификацией.

Системы НЧ диапазона имеют наименьшую дальность действия, которая составляет единицы сантиметров, что существенно ограничивает их область применения.

При сравнении проникающей способности рабочего поля считывателей различных радиочастотных диапазонов можно увидеть, что она значительно выше в НЧ и ВЧ области, по сравнению с СВЧ и МВЧ.

Электромагнитные волны МВЧ диапазона имеют наименьшую проникающую способность и по своим свойствам похожи на световой луч. Связь между считывателем и меткой в этом диапазоне практически возможна только на прямой видимости.

Электромагнитные волны СВЧ имеют несколько большую проникающую способность, что позволяет им пройти сквозь небольшие препятствия на небольшом расстоянии от антенны, но если метка будет прикрыта ладонью или на пути радиоволн встанет человек, то такая метка окажется незамеченной считывателем. Вся энергия излучаемого электромагнитного поля окажется поглощенной препятствием. Это обстоятельство делает СВЧ системы потенциально опасными для людей, находящихся в рабочей зоне считывателей РЧИ.

Электромагнитные волны ВЧ диапазона имеют большую проникающую способность и практически свободно проходят через диэлектрические материалы, такие как картон, бумага, дерево, что позволяет уверенно считывать метки этого диапазона на книгах, сложенных в стопках или размещенных на стеллажах. Наличие в рабочей зоне токопроводящих материалов (металл, вода) оказывает влияние на работу антенн считывателей и меток и может помешать работе РЧИ системы. Для работы меток на металлических поверхностях или при маркировке емкостей с водой, используют специальные метки и считыватели, учитывающие такое влияние.

Системы НЧ диапазона имеют наибольшую проникающую способность, но при этом их рабочая зона не превышает 1 см, поэтому очень высокая проникающая способность рабочего поля считывателя не имеет существенного значения для работы таких систем РЧИ.

Рассмотренные свойства систем РЧИ существующих частотных диапазонов определяют области их применения.

Высокая дальность действия и скорость обмена данными систем МВЧ диапазона позволяет их эффективно использовать в системах позиционирования реального времени (RTLS – системы), а также в транспортной логистике, для идентификации движущихся автомобилей и контейнеров, находящихся в прямой видимости.

2
{"b":"879508","o":1}