Литмир - Электронная Библиотека

Наряду с аналитическими проблемами ситуацию усложняет и тот факт, что каждый нейрон образует около 1000 синаптических связей в различных участках клетки, которая, в свою очередь, является составной частью комплексной нейрональной сети. Все это делает практически невозможным избирательно замерить высвобождение определенного нейротрансмиттера.

Кроме всего прочего, нельзя исключать теоретическую возможность того, что стимуляция нейронной системы не будет сопровождаться высвобождением трансмиттеров, так как пресинаптическое торможение посредством пресинаптических рецепторов, действующих по принципу «отрицательной обратной связи», уменьшает или совсем прекращает высвобождение трансмиттера из пресинаптических нервных окончаний.

Вышеописанная проблематика делает весьма затруднительным само допущение факта трансмиттерной функции у субстанции, считающейся трансмиттером. Чтобы классифицировать продукт метаболизма клеток в качестве трансмиттера, он должен отвечать следующим четырем критериям:

1. Локализация.

Химическое вещество синтезируется в нейронах. Исследования постмортального материала демонстрируют характерное региональное распределение субстанций, причисленных к трансмиттерам.

2. Высвобождение.

Субстанция присутствует на окончаниях пресинаптических нейронов в высокой концентрации и высвобождается в больших количествах под воздействием ионов Са+2, оказывая определенное воздействие на постсинаптическую клетку или эффекторный орган.

3. Мимикрия.

Субстанция, введенная в организм эндогенным методом, в зависимости от ее объема в точности имитирует воздействие эндогенно высвобожденного нейротрансмиттера, т. е. активирует в постсинаптической клетке те же рецепторные ионные каналы или интрацеллюлярные (внутриклеточные) сигнальные трансдукционные каскады.

4. Инактивирование.

Наличие специфического механизма, способного удалить данную субстанцию из синаптической щели.

Мы уже упоминали о том, что для того, чтобы не происходило постоянных коротких замыканий при прохождении электрического сигнала через нервные клетки, последние, словно проводники, окутаны изолированными мембранами. Если идет целенаправленный информационный поток в виде поступающего электрического сигнала, то на месте контактов двух нервных клеток посредством химических посредников-нейротрансмиттеров он мгновенно воспринимается и передается дальше. Допамин представляет собой сигнал, играющий огромную роль при БП. Другими трансмиттерами, принимающими участие в передаче информационных сигналов, являются, к примеру, ацетилхолин, глутомат, серотонин. Место, разделяющее две контактные нервные клетки, синапс, имеет для БП огромное значение вследствие того, что здесь расположены допаминопроизводящие нервные клетки, то есть те, которые выделяют сигнальный трансмиттер. Причем, процесс выброса происходит только тогда, когда электрический сигнал достигает места контакта двух допаминопроизводящих клеток. Этот выделяющийся сигнальный посланник проскакивает через маленькую щель и соединяется кратковременно со специальным приемным устройством следующей близлежащей нервной клетки, называемым допаминовым рецептором.

В процессе этого взаимодействия возникает новый электрический сигнал, передаваемый далее следующим нейронам. Основная часть допамина возвращается обратно в пресинаптический нейрон, другая, меньшая его часть, участвующая в передаче нервного импульса, расщепляется с помощью двух энзимов: моноаминооксидазы-В (МАО-В) и катехол-О-метил-трансферазы.

Разрушение черного вещества – объективный показатель нарушений структуры мозга

При болезни Паркинсона происходит постепенная дегенерация групп допаминергических нервных клеток, производящих допамин. Эта группа нейронов – черная субстанция (substantia nigra) – получившая свое название из-за обилия темного пигмента, входит в состав базальных ганглий. Своей темной окраской substantia nigra обязана меланину, побочному продукту синтеза допамина. На срезе мозга здорового человека эта темная материя различима невооруженным глазом. У больных БП она намного светлее и по внешнему виду напоминает шрам. Этот светлый «шрам» образуют вспомогательные опорные клетки, окружающие нейроны, которые называются глиальными (греч. «glia» – клей). Глиальные клетки заполняют пустоты, образующиеся за счет отмирания нейронов.

К моменту рождения человек наделен примерно 450 тысячами допаминергических клеток. У здоровых людей их количество уменьшается с течением жизни и составляет к преклонному возрасту 150–300 тысяч. У больных БП первые симптомы болезни начинают проявляться лишь тогда, когда в базальных ганглиях остается всего 20–30 % функционирующих допаминергических нервных клеток.

Другие дегенеративные явления, связанные с недостатком допамина

В более редких случаях распад клеток наблюдается и в других регионах мозга. Например, нередко встречающееся у больных БП нарушение обоняния, которое появляется на ранних стадиях заболевания, может служить тревожным сигналом гибели клеток, производящих допамин, расположенных в мозге в центре обоняния.

Дегенерированные допаминергические нейроны можно обнаружить и в других органах, например, в нейроактивной субстанции сетчатки глаза или в кишечнике, причем изменения в кишечнике отмечаются на особенно ранних стадиях развития БП. Эти последние данные предполагают существование периферической допаминергической системы.

Наряду с установлением факта гибели нервных клеток существует еще одно характерное для постановки диагноза БП обследование на наличие телец Леви (патологических агрегатов белка а-синуклеина). Являются ли тельца Леви основными «виновниками» преждевременной гибели нейронов – пока неясно. Их присутствие характерно, однако, не только для БП: они встречаются и при других нейро-дегенеративных заболеваниях. Кроме того, их находят у 10 % здоровых пожилых людей.

Динамическое равновесие сигнальных посланников

Внутри базальных ганглий сигнальные вещества допамин, ацетилохолин и глутамат регулируют импульсы, обеспечивающие выполнение двигательных и вегетативных функций. При этом необходимым условием такого обеспечения является их сбалансированная концентрация и координация. Следствием недостатка допамина при БП является преобладание содержания ацетилхолина и глутамата. Избыток ацетилхолина, по всей вероятности, ведет к появлению таких симптомов как тремор и ригидность. Гипо– и акинезия являются следствием недостаточной активизации большой коры мозга за счет нехватки допамина (рис. 4). В нейродегенеративный процесс оказываются вовлеченными и сигнальные вещества серотонин и норадреналин, играющие важную роль в возникновении депрессий, часто сопровождающих БП.

Болезнь Паркинсона. Диагностика, уход, упражнения - img_6

Рис. 4

Несмотря на то, что структура мозга и биохимические процессы, протекающие в нем при болезни Паркинсона достаточно хорошо известны, до сегоднящнего дня не ясно, почему вообще возникает этот неудержимый, прогрессирующий процесс гибели нервных клеток. Оставляя в стороне некоторые исключения, причины возникновени БП в большинстве случаев остаются для нас недоступными.

8. Современные представления о работе мозга. Наши заботы и надежды

Проект создания «Вселенной мозга» и эффект «старой промокашки»

Исследования в области нейробиологии проводятся во многих странах сотнями институтов и частных компаний. За последние годы накоплено множество информации о строении головного мозга и отдельных нейронов, о взаимодействиях нейронных соединений и отдельных белков в синапсах, о нарушениях в работе нервной системы, приводящих к различным заболеваниям. При этом стало ясно, что в ближайшие годы поток данных будет продолжать стремительно увеличиваться, а значит жизненно необходимыми становятся методы их каталогизации и систематизации. В таком огромном хозяйстве, как наш мозг, необходимы не только учет и контроль всей его жизнедеятельности, но и понимание логистики взаимодействий его отдельных регионов и их функций.

24
{"b":"879140","o":1}