В 1944 г. появляются работы Нобелевского лауреата Г. Гассера – пионера в области электропередачи сигнала между нервными клетками. Его ученик, Г. Грундфест, директор нейрофизического института Колумбийского университета, вместе с биохимиком Д. Нахманзоном изучили биохимические изменения, происходящие при прохождении сигнала через нервную клетку, которая начала рассматриваться не только как проводник информационных потоков, но и как биологическая конструкция, ставшая ключом к пониманию функций мозга. Благодаря изучению нервной клетки появилось первое представление о биологических причинах возникновения, например, произвольного движения, внимания, памяти, процесса обучения.
Итак, в начале XX столетия были выдвинуты три теории биологии нервной клетки, являющихся главными в понимании функций мозга и до сегодняшнего дня:
Первая – теория о нейронах, определяющая нервную клетку (нейрон) как основной строительный элемент сигнальной системы мозга.
Вторая – теория об ионах, описывающая передачу информации внутри нервной клетки, механизм возникновения электрического сигнала внутри нее и последующее его распространение на значительные расстояния.
Третья – химическая теория, описывающая передачу сигнала между окончаниями нервных клеток – синапсами посредством химического трансмиттера, воспроизводимого ими. Соседняя клетка узнает этот сигнал и реагирует специфической молекулой – рецептором, находящимся на внешней поверхности клеточной мембраны.
В ОТЛИЧИЕ ОТ МНОГИХ ДРУГИХ КЛЕТОК, ИМЕЮЩИХ ПРОСТЫЕ ОЧЕРТАНИЯ, ФОРМА НЕРВНЫХ КЛЕТОК ИМЕЕТ СЛОЖНУЮ КОНФИГУРАЦИЮ С ЧРЕЗВЫЧАЙНО НЕЖНЫМИ ПРОДОЛЖЕНИЯМИ, КОТОРЫЕ ПРИМЕРНО В 100 РАЗ ТОНЬШЕ ЧЕЛОВЕЧЕСКОГО ВОЛОСА.
В 90-х годах XIX-го столетия испанский нейроанатом С. Кахаль заложил основы современных исследований нервной системы в области нейронов. До Кахаля биологи не уделяли достаточного внимания форме нервных клеток. В отличие от многих других клеток, имеющих простые очертания, форма нервных клеток имеет сложную конфигурацию с чрезвычайно нежными продолжениями, которые примерно в 100 раз тоньше человеческого волоса. Биологи не знали, являются ли они окончаниями нервных клеток. Многие, включая известного итальянского анатома К. Гольджи, считали, что нервные клетки не имеют внешней мембраны, и цитоплазма одной клетки непосредственно соединена с цитоплазмой другой, создавая непрерывную, тесно связанную сеть, наподобие паутины, в которой сигналы распространяются одновременно во все стороны. Поэтому за основу нервной системы Гольджи принимал беспрепятственно коммуницирующую нервную сеть, а не отдельную клетку[4].
Кахаль, оставив мечту стать художником, посвятил себя общей анатомии, а затем анатомии мозга. Наблюдая статическую, мертвую клетку, он, благодаря своему врожденному таланту художника и воображению, наделял ее свойствами живой. Известный английский физиолог Ч. Шеррингтон писал о Кахале: «Он описывал картины, которые видел под микроскопом так, словно они оживали, начинали чувствовать, двигаться, надеяться и умирать, как и мы. Это было поистине изумительно, хотя изучаемые препараты были либо мертвыми, либо зафиксированными». Кахаль ищет более совершенные методы, позволяющие идентифицировать нервные клетки во всем их множестве. Во-первых, Кахаль исследовал мозг не взрослых, а новорожденных животных. Так как количество нервных клеток в их мозге значительно меньше, они упакованы еще не так тесно, и их продолжения очень коротки, то ученый хотел увидеть в «клеточном лесу» мозга отдельные ростки новых клеток. Во-вторых, он использовал специальные индикаторные краски на основе серебра, разработанные им самим. Обосновывая свои новые методики, Кахаль рассуждал: «Почему бы нам не изучать молодой лес, поскольку старый, разросшийся непрогляден и непроходим? На ранней стадии развития еще относительно маленькие нервные клетки в любом интервале вырастают полностью, и даже изначальные разветвленные окончания будут видны достаточно четко». Таким образом, ему удалось проследить процессы развития нервной клетки – нейрона, определить ее конструкцию и составные части: клеточное ядро, аксон и множество нежных дендритов. Суммируя и анализируя свои наблюдения, Кахаль сформулировал четыре принципа учения о нейронах и разработал теорию нейронных конструкций, до настоящего времени определяющую понимание функций серого вещества головного мозга.
1. Нейрон является основной структурной и функциональной составляющей мозга, как его основной строительной ячейкой, так и элементарным переносчиком сигнала.
2. Окончание аксона одного нейрона устанавливает контакт с дендритами другого нейрона только в специальных местах – синапсах, лежащих между двумя нейронами и разделенных синаптическим зазором. Окончание аксона одной нервной клетки, которое Кахаль называл «пресинаптическим окончанием», подходит совсем близко к дендритам другой нервной клетки, но не касается их, как бы пытаясь «прошептать нечто тайное, доверительное».
3. Нейроны вступают в соединения непроизвольно. Каждая нервная клетка взаимодействует с синапсами только других определенных нервных клеток. С помощью принципа специфических соединений Кахаль смог показать, что нервные клетки связаны друг с другом только по определенным направлениям, которые он назвал «сетью переключений». Сигналы движутся по ним по правилам, согласно которым, каждый единичный нейрон осуществляет контакт посредством многих пресинаптических окончаний с дендритами множества целевых клеток. По этой причине каждый отдельный нейрон широко распределяет полученную им информацию, достигая целевых клеток, которые часто находятся в различных областях мозга. Дендриты целевой клетки, в свою очередь, воспринимают информацию целого ряда раздражений различных нейронов, которые могут интегрировать сигналы от других нейронов, даже от тех, которые лежат в других областях мозга. На основании анализа передачи сигнала, Кахаль пришел к выводу, что мозг является органом, состоящим из специфических, логически предсказуемых систем переключений. Этим он опроверг господствующее в то время мнение, согласно которому, мозг представляет собой «расплывчатую» нервную систему, в которой возможны любые виды взаимодействия.
4. Принцип динамической поляризации. Согласно этому принципу, сигналы переносятся в определенных сетях переключений только в одном направлении. Это утверждение имело огромное значение – оно приводило к целому ряду логических последствий, которые вскоре стали правилами, используемыми до сегодняшнего времени для объяснения прохождения информационных потоков. Впоследствии оно нашло свое применение при установлении систем переключения в головном и спинном мозге. Каждая из этих систем несет определенную функцию. Например, сенсорные нейроны, находящиеся на коже и других органах чувств, реагируют на раздражения определенного вида, поступающие из окружающей среды – механическое давление (кожа), свет (зрение), звуковые волны (слух) или специфические химические вещества (запах и вкус) – и посылают сигналы дальше в мозг. Мотонейроны посылают свои сигналы из областей головного и спинного мозга к двигательным клеткам мускулов или клеткам желез и управляют активностью этих клеток. Интернейроны, составляющие большинство в общей категории нейронов мозга, служат станциями переключения между сенсорными и моторными нейронами. На основании этого, Кахаль смог проследить движение информационных потоков от сенсорных нейронов в коже к спинному мозгу и оттуда дальше – к интернейронам, мотонейронам и, наконец, к двигательным клеткам мускулов. Эти результаты он получил в ходе исследований на крысах, обезьянах и людях. С течением времени было выявлено, что каждый тип клетки, благодаря своим биохимическим особенностям, подвержен определенным заболеваниям. Сенсорные нейроны в коже и суставах, например, подвергаются такому заболеванию, как сифилис. Болезнь Паркинсона поражает определенную категорию интернейронов. Некоторые болезни избирательны до такой степени, что они поражают только часть нейронов. Рассеянный склероз выбирает своей жертвой только определенные виды аксонов. Ботулизм разрушает синапсы.