Литмир - Электронная Библиотека
A
A

АНАЛИЗЫ: Теория и практика сложности

Компьютеры становятся все быстрее, объемы памяти - все больше. Можно подумать, что уже не столь важно, какие алгоритмы применять, - современный компьютер может все. Однако алгоритм для решения какой-нибудь нехитрой задачки на триста-пятьсот переменных грубой силой (brute force - вполне официальный термин в computer science) может потребовать порядка 2300 шагов - больше, чем во Вселенной элементарных частиц…

Этой проблемой занимается теория сложности: пытается придумать алгоритмы, которые бы работали быстро, а затем доказать, что они быстро работают. Или, на худой конец, доказать, что таких алгоритмов придумать нельзя.

Но как связаны теория и практика? Насколько то, чем занимаются гуру теоретической информатики, применимо к живым, практически полезным вычислениям? Или практическая польза была целиком извлечена во времена Эдсгера Дейкстры (Edsger Dijkstra), а современная теория сложности - лишь теоретическая забава, занимающая умы математиков, применения которой неясны и отдаленны (таковыми сейчас являются или по крайней мере кажутся многие области математики)? Попробуем разобраться…

Немного теории

Теория сложности (complexity theory) - это раздел теоретической информатики, связанный с оценками сложности работы алгоритмов. Сложность - понятие многогранное: здесь и время работы, и память, которая требуется алгоритму, и возможность его распараллеливания на несколько «процессоров»… Кстати, процессоры в теории сложности, как правило, моделируются машинами Тьюринга[Алан Тьюринг, один из отцов-основателей современной computer science, заложил основы теории сложности в середине 30-х годах прошлого века, когда из компьютеров (то есть «устройств для счета») доступны были абаки, арифмометры да не доведенная до «железа» машина Бэббиджа. Возможно, без его основополагающих работ никаких компьютеров бы и не появилось] - системами из бесконечной ленты и одной пишущей и читающей головки, безо всякого произвольного доступа; оказывается, в такое прокрустово ложе можно уместить все разнообразие компьютерных архитектур… но это уже тема для отдельного обстоятельного разговора.

Что же это такое - сложность алгоритма (в рамках статьи речь пойдет лишь о временно,й сложности [time complexity] классических детерминированных алгоритмов, а о сложности по объему требуемой памяти, вероятностных алгоритмах, протоколах для бесед вездесущих Боба и Алисы, параллельных и квантовых вычислениях мы, возможно, расскажем в следующих сериях)? Интуитивно это понятие довольно простое. У алгоритма есть вход (input) - описание задачи, которую нужно решить. На ее решение алгоритм тратит какое-то время (то есть количество операций). Сложность - это функция от длины входа, значение которой равно максимальному (по всевозможным входам данной длины) количеству операций, требуемых алгоритму для получения ответа.

Пример. Пусть дана последовательность из нулей и единиц, и нам нужно выяснить, есть ли там хоть одна единица. Алгоритм будет последовательно проверять, нет ли единицы в текущем бите, а затем двигаться дальше, пока вход не кончится. Поскольку единица действительно может быть только одна, для получения точного ответа на этот вопрос в худшем случае придется проверить все n символов входа. В результате получаем сложность порядка cn, где c - количество шагов, потребное для проверки текущего символа и перехода к следующему. Поскольку такого рода константы сильно зависят от конкретной реализации, математического смысла они не имеют, и их обычно прячут за символом O: в данном случае специалист по теории сложности сказал бы, что алгоритм имеет сложность O(n); иными словами, он линейный. Говорят, что алгоритм полиномиальный, если его сложность оценивается сверху некоторым многочленом p(n); алгоритм экспоненциальный, если его сложность имеет порядок 2cn. В реальных, тем более промышленных, задачах редко используются алгоритмы со сложностью больше экспоненты: уже экспоненциальная сложность стала во многих (но не во всех, как мы увидим ниже) случаях синонимом практической неразрешимости и ужасной немасштабируемости. В этой статье мы более никакими теоретико-сложностными концепциями, кроме полиномиального и экспоненциального алгоритма, пользоваться не будем.

Математически есть смысл рассматривать лишь бесконечные последовательности задач: если размер входа ограничен, всякий алгоритм можно заменить большущей, но все же константного размера таблицей, в которой будет записано соответствие между входами и выходами, и алгоритм будет иметь константную сложность (и совершенно не важно, что константа эта может оказаться больше числа атомов во Вселенной).

Мы собирались поговорить о том, насколько теоретические успехи в теории сложности связаны с практикой. В журнальной статье, конечно, невозможно дать обзор всех успехов и неудач теории сложности, так что мы остановимся лишь на трех примерах. Первый из них - биоинформатика - позитивный; в этой области любые теоретические продвижения весьма желательны с практической точки зрения (и продвижения постоянно происходят). Другой пример - линейное программирование - напротив, негативен: здесь один из крупнейших прорывов в теории сложности оказался абсолютно неприменим на практике. Ну а третий пример - решение задачи пропозициональной выполнимости - на мой взгляд, достаточно точно отражает современный баланс между теорией и практикой. Итак, вперед.

Pro: биоинформатика

Об успехах современной генетики наслышаны многие. Вряд ли сейчас нужно пересказывать истории об овечке Долли, а также - что куда ближе к теме этой статьи - о расшифровке генома человека. Подчеркнем лишь, что расшифровка генома вряд ли могла быть возможной без активного участия теоретической информатики.

Правила, по которым последовательность нуклеотидов гена транслируется в последовательность аминокислот соответствующего протеина (эти правила, собственно, и называются генетическим кодом), были известны еще в 1960-х годах. Каждая тройка нуклеотидов - так называемый кодон - переходит в одну аминокислоту. Нуклеотидов бывает всего четыре, поэтому возможных вариантов кодонов 64; но так как аминокислот около 20, то разные кодоны могут кодировать одну и ту же аминокислоту; есть специальный выделенный кодон, означающий «начало передачи данных», а любой из других трех выделенных кодонов (стоп-кодонов) означает «конец передачи».

42
{"b":"87355","o":1}