Литмир - Электронная Библиотека
Содержание  
A
A

Журнал "Компьютерра" №725 - _725-28.jpg

Наблюдения проводились путем сканирования двумя группами детекторов (двух секций), каждая из которых состояла из двух параллельно направленных приемников света, включенных в схему совпадения. Измерения проводились следующим образом: сначала на космический объект вручную наводились детекторы первой секции, и в течение двенадцати минут регистрировался возможный поток гамма-квантов от источника (регистрировалось число черенковских вспышек за этот интервал времени). Через двенадцать минут на наблюдаемый объект наводились детекторы второй секции. При этом на первой секции регистрировались черенковские вспышки небесного фона (источник вне поля зрения гамма-телескопа). Еще через двенадцать минут на наблюдаемый объект вновь наводилась первая секция и т. д. Таким образом, исследуемый объект постоянно находился в поле зрения одной из секций, причем другая секция в это время регистрировала фон вне объекта.

На этой установке были проведены наблюдения сорока трех небесных объектов различного типа: пульсаров, остатков сверхновых звезд, источников гамма-квантов с энергией 108 эВ и др. Зарегистрировано гамма-излучение СВЭ E>2х1012 эВ от пульсара CP 1133, от рентгеновского источника Cyg X-3 и объекта Cas g-1 с высокой степенью достоверности. Детальный анализ результатов наблюдений показал, что два типа объектов можно уверенно считать источниками гамма-квантов СВЭ - это пульсары и источники гамма-излучения в области 108 эВ. Особое внимание было уделено рентгеновскому источнику Cyg X-3, который наблюдали в Крыму с 1972 года по 1980 год включительно. В результате девятилетних наблюдений был определен с высокой точностью период излучения в 4,8 часа и его производная. Показано, что как в гамма-излучении СВЭ, так и в рентгеновском излучении источника Cyg X-3 присутствует составляющая с периодом 328 суток.

Журнал "Компьютерра" №725 - _725-29.jpg

Для уверенного обнаружения гамма-квантов сверхвысоких энергий от определенного объекта при наблюдениях на простейших гамма-телескопах (гамма-телескопы первого поколения), которые регистрировали только само наличие черенковской вспышки, требовалось очень длительное время регистрации, при наблюдениях некоторых источников достигавшее нескольких лет. Это очень сильно затрудняло поиск новых объектов и особенно исследование переменных источников гамма-квантов, хотя именно такие объекты являются типичными и самыми распространенными. Наибольшим препятствием для обнаружения и исследования источников гамма-квантов СВЭ является значительный фон космических лучей, заряженные частицы которых вызывают в атмосфере Земли черенковские вспышки, трудно отличимые от вспышек, вызванных гамма-квантами. Тем не менее различия между ними есть. Используя этот факт, многие группы исследователей построили новые, конструктивно более сложные, гамма-телескопы. Главная особенность современных гамма-телескопов (телескопы второго поколения) - это применение многоканальных камер, а следовательно, и возможность строить изображение черенковских вспышек.

Первый в мире сдвоенный гамма-телескоп второго поколения ГТ-48 (в нем насчитывается 48 зеркал) был построен в Крымской астрофизической обсерватории под руководством А. А. Степаняна (научный руководитель и главный конструктор проекта). Практические наблюдения в КрАО на этом гамма-телескопе (комплексной установке) были начаты в 1989 году.

Журнал "Компьютерра" №725 - _725-30.jpg

Установка состоит из двух идентичных альт-азимутальных монтировок (секций) - северной (N) и южной (S), расположенных на расстоянии 20 м в направлении север-юг на высоте 600м над уровнем моря. На каждой монтировке установлено по шесть телескопов, которые здесь правильнее называть элементами. Оптика каждого элемента состоит из четырех 1,2-метровых зеркал, имеющих общий фокус. В фокальной плоскости каждого такого элемента расположен светоприемник (камера), состоящий из 37 фотоумножителей (37 ячеек), с помощью которого, собственно, и регистрируются изображения черенковских вспышек в видимой области спектра (300–600 нм).

Журнал "Компьютерра" №725 - _725-27.jpg

Перед каждым фотоэлектронным умножителем (ФЭУ) помещен конический световод. Наружные поверхности окон световодов имеют форму шестигранников и вплотную прилегают друг к другу, так что весь свет, поступающий в светоприемник, попадает на катоды ФЭУ. Средний диаметр входного окна световодов определяет угол поля зрения одной ячейки (0,4 градуса). Сигналы от ячеек четырех элементов, направленных на один и тот же участок неба, линейно складываются, а вспышки регистрируются лишь в том случае, когда амплитуды сигналов, совпадающих по времени (в диапазоне 15 нс) в каких-либо двух из 37 каналов, превышают установленный порог.

Оставшиеся два элемента монтировки имеют фокусное расстояние 3,2 м и предназначены для регистрации вспышек ультрафиолетового излучения в области 200–300 нм. Светоприемниками там являются солнечно-слепые фотоумножители. Общая площадь зеркал на обеих монтировках (секциях) составляет 54 кв. м. Движение установки осуществляется системой управления с точностью ведения ±0,05 градуса. Наблюдения могут проводиться как в режиме совпадения между двумя секциями, так и независимо каждой секцией. Эффективная пороговая энергия регистрации гамма-квантов - 1 ТэВ. Управление телескопом ГТ-48 осуществляется с помощью персонального компьютера, соответствующие программы для которого были написаны сотрудниками нашей лаборатории.

Наблюдения на гамма-телескопах второго поколения проводятся в различных точках земного шара, однако таких телескопов во всем мире не больше десятка: три из них установлены в южном полушарии, остальные в северном, один из них - в Крымской астрофизической обсерватории (КрАО).

Глубже в землю - ближе к звездам!..

Применение эффекта Вавилова-Черенкова - именно в силу физических свойств возникающего излучения - позволяет решить непростую задачу пространственной локализации наблюдаемого источника излучения.

18
{"b":"87335","o":1}