Автор: Анисин, Андрей
Я давно не был в Москве, но из телевизора и газет знаю, что если выйти на станции метро "Октябрьское поле", проехать несколько остановок до "черной головы" и проследить за взглядом Курчатова, то можно наблюдать редкое финансовое явление. За высоким забором на головы российских ученых проливается золотой дождь бюджетного финансирования.
РНЦ "Курчатовский институт" - головная научная организация Программы координации работ в области нанотехнологий и наноматериалов в Российской Федерации. Бюджет программы на 2008–2010 годы - 27,733 млрд. рублей . Не бог весть что, конечно, по нынешним временам, но для сравнения: в 2006 году на всю науку в стране было выделено 72 млрд. рублей. Дальше - больше. 19 июля 2007 года президент России Путин В. В. подписал федеральный закон №139.ФЗ о "российской корпорации нанотехнологий". Тут уже из бюджета на полтора года выделяется 130 млрд. рублей [Это не зависть, это не зависть, это не зависть…], что, как легко подсчитать, составляет почти два научных бюджета страны. Поскольку бюджетные денежки не совсем чтоб чужие а, в некоторой части, очень даже свои, хотелось бы получить от этих вложений хоть какой.нибудь результат. Хотя бы из чисто эстетических соображений [Может, очередной небоскреб в Питере, Нижнем или Екатеринбурге?].Главным аргументом против инвестирования в науку является тот безрадостный факт, что подтягивание травы вверх не ускоряет ее роста. По крайней мере, существенно. Тем не менее мелиорация и рекультивация земель, гидропоника позволяют получить хорошие результаты. Программы развития нанотехнологий в США и Европе - это унавоживание почвы путем разбрасывания большого количества относительно мелких грантов. Мы же, как обычно, выбираем особый путь - путь концентрирования государственных средств. Правда, история науки знает как минимум три случая успешного вливания больших денег - ядерная физика, космонавтика и микроэлектроника. Наличие положительных примеров не может не радовать, но… впрочем, вернемся к нанотехнологиям.
Пока что наши нанотехнологии - самые большие нанотехнологии в мире. Однако если поездить по Москве, другим городам и даже поселкам городского типа, можно найти места, где технология шагнула за следующий масштабный рубеж. Ангстремные технологии. Причем достаточно развитые - им доступна практически любая атомная структура, в любом количестве и по доступным ценам. Я сейчас про классическую химию, в первую очередь органическую. Те читатели, что окончили среднюю школу, могут с гордостью именовать себя нанотехнологами. В школьном курсе органической химии [Сейчас это 10.й класс], например, есть лабораторная работа по синтезу сложного эфира уксусной кислоты и этилового спирта. Размер молекулы - порядка нанометра. Дальше - больше: растворы полимеров, коллоидная химия, гетерогенный катализ… Размеры частиц от десятков ангстрем до микрон. То есть как раз та область на шкале пространственного масштаба, что отводит себе новое направление - нанотехнология. А ведь эти области знания развиваются уже не одно столетие (особенно гончарное дело и строительные связующие). Я не хотел бы сводить все к "не там ищете" или "этому дала, этому дала, а этому не дала" [Сорока Белобока. Кашу], просто в очередной раз отмечаю, что корни нанотехнологий уходят в глубь тысячелетий. Нанотехнологии знали взлеты и периоды застоя. Они существенно определяют сегодняшнее лицо мира, да и раньше были не на последних ролях. Но развитие "древнейших нанотехнологий" всегда протекало более.менее гладко. Бывали бурные периоды, но без эксцессов.
Сегодня же мы ожидаем от развития нанотехнологий как раз эксцессов - стремительного взлета, прорыва, того, что синергетики называют "режимом с обострением". Пример такого процесса дает каменный уголь или любезные сердцу москвичей торфяники. Уголь и торф окисляются на воздухе, причем даже при комнатной температуре. Другое дело, что скорость окисления в этих условиях очень мала и без специальных приборов не регистрируется.
Но если уголь или торф собрать в большую кучу, то незначительное тепло, что выделяется в ходе реакции окисления, не будет успевать рассеиваться в окружающую среду.
уча угля или торфяник начнет саморазогреваться, скорость процесса и мощность тепловыделения возрастет (она экспоненциально зависит от температуры), и через некоторое время "без искры возгорится пламя". Классики советской науки Н. Н. Семенов, А. Д. Франк.Каменецкий и А. Г. Мержанов разработали для таких случаев теорию теплового взрыва, в рамках которой нашли предельные размеры куч, способных самовозгореться. Вот и сейчас правительство намерено собрать все нанотехнологии в одну кучу, хорошенько утрамбовать, напитать деньгами и… Однако, как показывает та же теория теплового взрыва, одного концентрирования недостаточно.
В общем случае для возникновения "режима с обострением" необходима положительная обратная связь (в приведенном примере это аррениусовская зависимость скорости химической реакции от температуры) и особый (не слишком сильный) режим рассеивания энергии (в приведенном примере это свободно.конвективный теплообмен). Продолжая параллель с развитием нанотехнологий, это можно выразить так: при некотором "критическом объеме" финансирования, правильно организованных положительных обратных связях и низкой диссипации средств нанотех перейдет в режим обострения, а вспыхнувший факел знаний осветит всю нашу экономику. Россия поднимется с колен, преодолеет вековую отсталость, задышит полной грудью… [А может, и в таком порядке: "преодолеет", "задышит" и "поднимется"]
В области построения полуизолированных и изолированных систем опыт у нашей страны огромный: можем шарашку организовать, а можем по примеру закрытых атомоградов "нано.десятку" отстроить. Нам только дай! Поэтому процессы диссипации рассматривать не будем, а обратимся сразу к положительным обратным связям. Тем более что такой опыт у нас тоже есть, но в основном отрицательный. Например, футболистам у нас платят хорошо, а играют они все равно плохо.