Литмир - Электронная Библиотека

Отработанные твэлы ядерного реактора содержат неиспользованный уран-235, уран-238 и плутоний-239, образующийся в результате поглощения ураном-238 нейтронов и осколков с большим содержанием последних. Таким образом, различные изотопы в отработанном топливе содержат источники α-, β- и γ-излучения с различными периодами полураспада. Самый короткий период полураспада γ изотопов, имеющих самую большую активность на единицу массы, поэтому отработанные твэлы реактора в высшей степени радиоактивны. Их удаляют из реактора и перерабатывают с помощью устройств с дистанционным управлением.

Далее твэлы помещают в бассейн выдержки приблизительно на год, пока не распадутся изотопы с коротким сроком жизни. Затем контейнер с топливом открывают; отработанное топливо вынимают и подвергают химической обработке; неиспользованные уран и плутоний выделяют для последующего применения. Все другие материалы хранят в запечатанных контейнерах для отходов с высоким уровнем радиоактивности. Коррозия контейнеров может стать источником потенциальной опасности, но ее можно избежать путем витрификации (застекловывания) отходов. Материал смешивают с расплавленным стеклом и остужают, в результате чего получаются стеклянные блоки с материалом, предохраняющие от коррозии. При этом следует соблюдать осторожность и не располагать рядом большие порции урана и плутония. В противном случае может начаться цепная реакция и последовать взрыв.

См. также статьи «Атомная энергия», «Деление ядра».

РАДИОАКТИВНОСТЬ 4 — ИЗМЕРЕНИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Ионизирующее излучение губительно для живых клеток, так как необратимо повреждает их мембраны и разрушает механизм репликации[5], повреждая цепи ДНК в ядрах клеток. Кроме того, ионизирующее излучение образует свободные радикалы, которые служат причиной образования опухолей.

• Дозой излучения, полученного веществом от ионизирующего излучения, называется количество энергии, поглощенной веществом на единицу массы. Единицей дозы ионизирующего излучения служит грей (Гр), равный 1 Дж/кг.

• Относительной биологической эффективностью (ОБЭ) рассматриваемого ионизирующего излучения называется отношение поглощенной дозы стандартного излучения (обычно 250 кВ рентгеновского излучения), к поглощенной дозе рассматриваемого излучения, вызывающей определенный биологический эффект. Например, ОБЭ a-излучения равна 10; это значит, что для произведения такого эффекта нужно взять десять доз стандартного излучения и одну дозу α-излучения.

• Дозовый эквивалент, полученный живой материей при поглощении некоей дозы ионизирующего излучения, равен дозе рентгеновского излучения 250 кВ, необходимой для произведения такого же биологического эффекта. Единицей дозового эквивалента служит сиверт (Св), также равный 1 Дж/кг.

Дозовый эквивалент равен произведению дозы излучения на относительную биологическую эффективность.

 Суммарным дозовым эквивалентом воздействия различных типов излучения называется сумма дозовых эквивалентов каждого типа излучения.

Нижнего предела биологического вреда от ионизирующего излучения не существует; максимум допустимого воздействия ионизирующего излучения определяется на основе признанного риска. В Великобритании установлено максимально допустимое воздействие, равное 15 Св в год, для профессий, связанных с ионизирующим излучением, и 0,5 Св в год выше естественной нормы для остального населения. Эти предельные показатели рассчитаны на основе трех смертельных случаев заболевания раком на один миллисиверт на 100 000 выживших при атомной бомбардировке Хиросимы и Нагасаки. Так, годовой предел в 0,5 мСв соответствует 750 смертям в год на население в 50 миллионов человек.

См. также статьи «Ионизация», «Радиоактивность 1, 2 и 3», «Рентгеновские лучи».

РАЗНОСТЬ ПОТЕНЦИАЛОВ И МОЩНОСТЬ

• Разностью потенциалов называется количество потенциальной энергии, приобретаемой или теряемой единичным точечным положительным зарядом при прохождении от одной точки к другой. В повседневной речи разность потенциалов называют «напряжение». Потенциальная энергия заряда часто называется электрической энергией. Разность потенциалов:

= E/Q,

где Е — получаемая энергия, Q — величина заряда.

• Единицей разности потенциалов служит вольт (В), равный разности потенциалов между двумя точками, если при перемещении заряда в один кулон между этими точками выделяется или потребляется один джоуль электрической энергии.

• Электродвижущая сила (ЭДС) источника электрической энергии равна количеству электрической энергии, приобретаемой единичным точечным зарядом, проходящим через источник. В электрической цепи поток заряда по ней переносит энергию от источников ЭДС к компонентам цепи.

• Перепадом разности потенциалов в компоненте называется потеря электрической энергии единичным зарядом, проходящим через компонент. Перепад разности потенциалов на концах компонента цепи можно сравнить с перепадом давления между выпускной и впускной трубами батареи центрального отопления. Разность давлений необходима, чтобы по батарее шел поток воды.

Электрическая мощность определяется как количество электрической энергии, переносимой в секунду по участку электрической цепи. Единицей мощности служит ватт (Вт). Один ватт равен переносу одного джоуля в секунду; 1 киловатт = 1000 ватт.

Так как сила тока — это количество заряда, переносимого в секунду по компоненту цепи или устройства, а разность потенциалов — количество электрической энергии, передаваемой единичным зарядом компоненту или устройству, то:

сила тока х разность потенциалов = заряд/время х электрическая энергия/заряд = электрическая энергия/время = мощность.

В бытовой сети цена за электроэнергию измеряется в киловатт-часах (кВт∙ч); 1 кВт∙ч равен 1 кВт электрической энергии, потребляемому за час.

См. также статью «Заряд и ток».

РЕЗОНАНС

Явление резонанса происходит, когда к колебательной системе прикладывается периодически изменяемая сила и амплитуда колебаний системы возрастает в большой степени. В любой системе, совершающей свободные колебания, за каждый полупериод кинетическая энергия превращается в потенциальную и обратно. При условии действия силы трения и отсутствия периодической силы колебания системы постепенно уменьшаются и ее энергия передается окружению с помощью трения. Говорят, что в таком случае колебания «затухают» от действия силы трения. В системе, испытывающей легкое затухание, происходит резонанс, если частота внешней периодически действующей силы равна частоте колебаний системы. При резонансе энергия, передаваемая системе периодической силой, равна энергии, теряемой в результате действия силы трения.

Простым примером служит ребенок на качелях, которые периодически толкают.

Если частота толчков равна естественной частоте колебаний f0, то их амплитуда становится очень большой, ограничиваемой только силами трения. Частота, при которой амплитуда наиболее увеличивается, называется частотой настройки. Для системы с небольшим затуханием она равна f0. Примеры резонирующих систем:

• механический резонанс, когда панель стиральной машины громко вибрирует при определенной скорости мотора;

• акустический резонанс, когда струя воздуха, направляемая с определенной силой под углом к горлышку бутылки заставляет столб воздуха внутри ее колебаться, издавая звук;

• электрический резонанс, когда по радио ловят определенную станцию настройкой шкалы на ее частоту так, что радиоволны этой частоты вызывают достаточно большую разность потенциалов с этой частотой в цепи настройки.

52
{"b":"870528","o":1}