1/R = 1/R1 + 1/R2 + 1/R3 +…, где R1, R2, R3 — сопротивление отдельных проводников.
Компоненты параллельной цепи можно выключать независимо друг от друга. Бытовые приборы и электрические лампы подключаются к сети параллельно, поэтому их можно включать и выключать независимо от других приборов и ламп.
См. также статьи «Законы Кирхгофа», «Заряд и ток», «Разность потенциалов и мощность».
ПРИНЦИП ИСКЛЮЧЕНИЯ (ПРИНЦИП ПАУЛИ)
Электрон в атоме обладает определенным количеством энергии и занимает место в оболочке, наиболее подходящей ему в соответствии с этой энергией. Каждая оболочка может удерживать не более определенного числа электронов. Самая внутренняя оболочка может удерживать не более двух электронов, а следующая — не более восьми. Распределение элементов по клеткам периодической таблицы связано как раз с заполнением электронами этих оболочек. Например, атом неона в основном состоянии имеет два из десяти электронов во внутренней оболочке и восемь во внешней. Неон — инертный газ, не вступающий в химические реакции, так как все места в его оболочках заняты.
В 1925 году Паули объяснил, почему электроны в атоме занимают те или иные уровни. Он понял, что состояние каждого электрона в атоме определяется четырьмя квантовыми числами, причем они не должны совпадать с квантовыми числами других электронов. Это положение известно как принцип исключения Паули.
• Энергия Е электрона в п-й оболочке определяется формулой Е = Е1/n2,
где Е1 — энергия электрона в оболочке n = 1. Номер оболочки η называется главным квантовым числом.
• Момент импульса электрона в оболочке может принимать различные квантовые значения, которые определяются орбитальным квантовым числом l, представляющим собой целое число от нуля до n — 1.
• Поскольку вращающийся по орбите электрон — крошечный магнит, то существует и магнитное квантовое число m1, принимающее значение от +l до -l.
• Спин электрона S — это собственный магнитный момент, не связанный с движением электрона. Паули предположил, что электрон в атоме может принимать одно из двух спиновых энергетических состояний (от англ. spin — вращение). Его вращение может быть направлено либо параллельно вращению ядра, либо в противоположную сторону.
Для первых двух оболочек принцип исключения выполняется следующим образом. Первая оболочка: n = 1, l = m1 = 0 — способна удерживать два электрона (с двумя разными спинами). Вторая оболочка: подгруппа n = 2, l = m1 = 0 дает место для двух электронов; подгруппа l = 1, m1 = ±1 или 0 дает место для шести электронов; всего во второй оболочке получается восемь электронов.
См. также статьи «Типы межатомных связей», «Электрон», «Энергетические уровни атомов».
ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ
Принцип неопределенности гласит, что положение и импульс частицы невозможно измерить с одинаковой точностью в одно и то же время. Процесс измерения одной величины воздействует на процесс измерения другой. Например, местоположение электрона можно определить исходя из отклонения фотона, направленного на электрон. Но процесс взаимодействия фотона и электрона изменяет импульс последнего. Более точно принцип неопределенности утверждает, что неопределенный импульс, умноженный на неопределенное положение равен h/2π, где h — постоянная Планка. Принцип неопределенности можно проиллюстрировать на примере β-распада, когда в ядре с повышенным количеством нейтронов образуется и мгновенно выделяется электрон. Если свести неопределенность его положения к пределам ядра, диаметр которого около 10-15 м, то неопределенность его импульса Δp составит около 10-19 кг∙м/с (= h/2nΔx, где Δx = 10-15 м и h = 6,6 х 10-34 Дж∙с). Таким образом, его импульс будет по меньшей мере равен 10-19 кг∙м/с, что слишком много для того, чтобы удержаться в ядре под действием электростатической силы притяжения протонов.
Принцип неопределенности позволяет рассчитать неопределенность энергии частиц или их системы в заданный промежуток времени. Поскольку никакая частица не может двигаться со скоростью, превышающей скорость света с, то неопределенность положения частицы в промежуток времени Δt равна cΔt. Нетрудно доказать, что для частицы, скорость которой близка к скорости света (Е = mс2), энергия ΔЕ = сΔp = h/cΔt, что объясняет, почему а-частица, образующаяся в ядре, преодолевает мощные ядерные силы, удерживающие ядро. Частица может приобрести энергию ΔЕ, необходимую для отрыва от ядра при условии, что время отрыва Δt меньше h/ΔЕ. Энергия, необходимая для отрыва, представляет собой энергетический барьер, который частица преодолевает, заимствуя энергию у ядра на короткий период времени. Фактически получается, что частица «прорывается» через барьер. Однако, если барьер слишком высокий или широкий, а-частица не может покинуть ядро и оно остается стабильным.
См. также статьи «Квантовая теория», «Радиоактивность 1».
ПРОСТОЕ ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ
Объект, совершающий колебательные движения, перемещается взад и вперед вдоль линии.
• Амплитудой его движения называется максимальное перемещение от центра колебательных движений.
• Периодом колебаний Тn называется время, которое требуется для завершения цикла колебаний (движение от одной крайней точки к другой и обратно).
Перемещение тела, совершающего колебательные движения, называется простым гармоническим движением, если ускорение пропорционально перемещению от центральной точки колебаний. Это условие можно выразить в виде уравнения «ускорение = — коэффициент х перемещение», где минус означает, что ускорение всегда направлено к центру, а перемещение измеряется от центра. Коэффициент пропорциональности в этом уравнении равен квадрату круговой частоты ω, которая равна 2π/Тn. Таким образом, при гармоническом колебании ускорение α и перемещение s должны соответствовать уравнению а = — ω2s. Ясно, что ускорение тела достигает максимального значения в точке наибольшего удаления от центра колебаний.
В системе, где тело массой m совершает колебания вследствие действия одной или нескольких пружин, сила, возвращающая тело в точку равновесия, зависит от степени растяжения пружин. Система пружин подчиняется закону Гука, а именно: сила растяжения равна he, где е — деформация (растяжение) пружины, k — постоянный коэффициент. Таким образом сила, стремящаяся восстановить исходное состояние, F = — ks для перемещения s от точки равновесия. Из второго закона Ньютона (F = mа) получаем а = F/m = ~(k/m)s. Это гармоническое колебательное движение и k/m = ω2. Следовательно, период колебаний Тn = 2π/ω = 2π(m/k)1/2.
Если масса увеличивается или пружина становится слабее, то период колебаний также увеличивается. Любая система, состоящая из одной или нескольких пружин, вызывает колебания, период которых рассчитывается по приведенной выше формуле.