Литмир - Электронная Библиотека

• Барион состоит из трех кварков, антибарион — из трех антикварков. Например, протон состоит из двух u-кварков и одного d-кварка (uud), а нейтрон — из одного u-кварка и двух d-кварков (udd).

• Мезон состоит из кварка и антикварка. Например, пион, или π-мезон, состоит из u- или d-кварка и u- или d-антикварка.

Первое доказательство существования кварков было получено, когда обнаружили, что электроны с высокой энергией в пучке отклонялись от неподвижной цели тремя центрами рассеяния внутри каждого протона и нейтрона. В линейном ускорителе Стэнфордского университета для определения внутренней структуры протонов и нейтронов был создан электронный пучок с достаточно высокой энергией. Результаты подтвердили кварковую модель, разработанную Мюрреем Гелл-Манном и Георгом Цвейгом, в качестве объяснения поведения частиц, образующихся при столкновениях на высокой скорости между адронами.

Кварки не существуют изолированно. При столкновениях адронов с большой энергией образуются кварк-антикварковые пары. В результате формируются дополнительные адроны и ни один из кварков или антикварков не остается вне адрона. Внутри последнего кварки движутся относительно свободно при условии, что они не отдаляются друг от друга. Взаимодействие между кварками осуществляется путем обмена глюонами.

См. также статьи «Взаимодействия частиц», «Ускорители частиц».

КВАРКИ 2

Материя состоит из фундаментальных частиц — лептонов (т. е. электронов, позитронов, нейтрино и антинейтрино) и кварков.

Частицы материи первоначально разделяли на три группы согласно их массе:

• легче электрона или такой же массы — лептон;

• тяжелее протона или такой же массы — барион;

• легче фотонов и тяжелее электронов — мезон.

Частицы внутри каждой группы различаются по точной массе, заряду, сроку жизни и странности. Последнее свойство было обнаружено, когда заметили, что определенные частицы рождаются парами в результате сильного взаимодействия и распадаются в результате слабого взаимодействия. Ввели понятие странности как квантовое число, которое сохраняется при процессах сильного взаимодействия.

В результате классификации барионов и мезонов по группам согласно заряду, странности и сроку жизни определили, что каждый барион состоит из трех кварков, каждый антибарион — из трех соответствующих антикварков и каждый мезон — из кварка и антикварка.

Ниже показаны возможные комбинации кварков и антикварков, составляющих барионы и мезоны соответственно. Предполагается, что лептоны являются элементарными частицами, не состоящими из других частиц.

Интернет-журнал "Домашняя лаборатория", 2007 №12 - img_9

См. также статьи «Взаимодействия частиц», «Ускорители частиц».

КОРПУСКУЛЯРНО-ВОЛНОВАЯ ДВОЙСТВЕННОСТЬ

Мельчайшие частицы материи имеют двойственную природу; в одних случаях они ведут себя как частицы, в других — как волны. Например, электрон ведет себя как частица, когда проходит через магнитное поле, и как волна — проходя через решетку кристалла, служащую тонкой дифракционной щелью, а дифракция — свойство волны. Мысль о том, что частицам материи свойственна двойственность, впервые высказал в 1923 году Луи де Бройль. В своей гипотезе он связал импульс частицы с так называемой де-бройлевской длиной волны λ с помощью уравнения λ = h/p, где h — постоянная Планка, р — импульс частицы.

Свидетельства, подтверждающие волновые свойства частиц, впервые получил в 1927 году Джордж Томсон, пропуская узкий пучок электронов, движущихся с одинаковой скоростью, через регулярную решетку атомов в тонком кристалле. Оказалось, что электроны в решетке подвергались дифракции и выходили из нее строго под определенными углами. Для измерения угла отклонения каждого дифрагированного луча применялась фотопленка.

Электроны отражаются каждым слоем атомов; с прилегающих слоев электроны взаимно усиливают отклонение в строго определенных направлениях, соответствующих рисунку дифракции. При этом величина отклонения между отраженными волнами от прилегающих слоев должна измеряться целыми числами де-бройлевской длины волны. Поскольку величина отклонения равна 2d∙sin θ/2, где d — расстояние между слоями, θ — угол отклонения, то угол дифракции 2d∙sin θ/2 = nk, где n — целое число. Измерив угол дифракции каждого дифрагированного луча, можно вычислить длину волны, если известно d. Значение длины волны можно проверить исходя из разности потенциалов анода V электронной пушки при помощи уравнения λ = h/(2meV)1/2, где m — масса электрона, е — заряд электрона. Это уравнение получается путем преобразования следующих равенств: анода пушки eV 1/2mv2, импульса mv = (2meV)1/2 и де-бройлевского λ = h/mv.

См. также статью «Квантовая теория».

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

Коэффициентом полезного действия (КПД) устройства называется отношение энергии, выдаваемой устройством, к энергии, получаемой этим устройством, или отношение полезной энергии к потребляемой. КПД можно измерять в процентах, умножив этот показатель на 100. Чтобы какое-либо устройство или механизм произвели полезную работу, нужна поступившая к ним энергия. Таким образом, КПД — часть энергии, потраченной на полезную работу. Тепловой двигатель приводит в действие механизмы, получая тепловую энергию от сгорания топлива. Трансформатор генерирует электрический ток определенного напряжения, будучи подключенным к источнику электрического тока другого напряжения. Энергия, не потраченная на полезную работу, пропадает, ее невозможно вернуть и потратить на что-то полезное. На национальном уровне около 20 % производимой энергии тратится зря вследствие неэффективности электростанций, при ее передаче и при преобразовании одного вида энергии в другой.

Тепловым называется двигатель, работающий между резервуарами с высокой и низкой температурой. Тепло из высокотемпературного резервуара используется для выполнения полезной работы. Не все оно может быть преобразовано в работу, так как часть его поступает в низкотемпературный резервуар, поскольку двигатель работает за счет разности температур. КПД двигателя равен W/Q1, где W — работа, выполненная двигателем с помощью энергии Q1, полученной из высокотемпературного резервуара. Так как W = Q1Q2, где Q2 — энергия, поступившая в низкотемпературный резервуар, то КПД двигателя равен (Q1Q2)/Q1. КПД всегда меньше единицы, поскольку Q2 — величина не нулевая.

Наиболее эффективным тепловым двигателем является модель идеального реверсивного[3] двигателя. По определению, КПД реверсивного двигателя (Т1Т2)Т1, где Т1 — температура высокотемпературного резервуара, Т2 — температура низкотемпературного резервуара.

См. также статьи «Энергия и мощность», «Энтропия».

КРАСНОЕ СМЕЩЕНИЕ

Эффектом Допплера называется изменение наблюдаемой частоты волн, источник которых движется относительно наблюдателя. Такое изменение частоты также называется допплеровским сдвигом. Эффект Допплера применяется в различных областях, в частности в радио- и гидролокации, астрономии.

45
{"b":"870528","o":1}