Таким образом, шаровая молния может включать в себя несколько автономных молний. Автономные тороиды молний нанизаны на одну общую ось, проходящую через центральные отверстия тороидов. Каждый тороид охвачен локально собственным продольным магнитным полем, а собственные поперечные магнитные поля тороидов, складываясь, образуют одно общее поперечное магнитное поле, охватывающее все автономные тороиды и замыкающееся через общее центральное отверстие шаровой молнии. При возникновении неустойчивости объединенная молния может разделиться, иногда с взрывом, то есть взрывается одна из них, а некоторые при взрыве могут и уцелеть.
На рисунке изображено (также в поперечном сечении) сложная шаровая молния, состоящая в частности из трех автономных молний (то есть больших тороидов), из которых каждая локально охвачена собственным продольным магнитным полем, условно окрашенным синим цветом. Поперечные магнитные поля автономных молний суммировались в одно общее поперечное магнитное поле (окрашено зеленым цветом), охватывающее снаружи все три молнии и замыкающееся через общее центральное отверстие молнии. Внутри больших тороидов, а также и между ними могут находиться в движении как одиночные спирали протонов и электронов, так и небольшие тороиды объединившихся спиралей одноименных зарядов этих же частиц. Из-за сложности рисунка они в нем не изображены.
Образования сложных молний возможны и другим путем: импульсы разряда одной и той же линейной молнии, следующие друг за другом, образуют несколько плазменных тороидов, которые, сцепляясь своими вертикальными магнитными полями, могут объединиться в одну шаровую молнию. Если же не успевают объединиться, то вылетают по отдельности.
Распад шаровой молнии
Наблюдались шаровые молнии, которые по несколько штук отделялись и от средней части канала линейной молнии [4, стр. 127]. Такое может случиться при пережатии горячего канала собственным усилившимся магнитным полем. При этом у зоны пережатия резко возрастает давление горячей плазмы, из нее образуется утолщение, раздвигающее магнитное поле, и горячая плазма выбрасывается во внешний холодный канал. Плазменные тороиды холодного канала, пополненные солидной порцией горячей плазмы, выталкиваются в атмосферу, где быстро стягиваются собственными магнитными полями в овальную форму.
Наблюдались и такие случаи, когда две медленно падающие шаровые молнии были как бы связаны между собой нитью светящегося жемчуга. Нить жемчуга вскоре исчезла, а спустя некоторое время растворились и шаровые молнии. Нить жемчуга — это, скорее всего, протонные замкнутые спирали (возможно, с электронными спиралями внутри), которые во время формирования двойной шаровой молнии оказались между молниями. Двойная молния после образования, по-видимому, вскоре разделилась, а протонно-электронные замкнутые спирали, еще не успев растратить вращательной энергии, собственными магнитными полями стянулись в небольшие шарики и были видны между двумя расходящимися овалами шаровых молний.
В начале статьи говорилось о случаях наблюдений шаровых молний в виде тороидов. По идее, тороидные спирали из ионизованных частиц, вытолкнутые из линейной молнии, могут оставаться какое-то время в таком виде только в том случае, если у них очень слабое или отсутствует собственное продольное магнитное поле, при наличии которого тороидная спираль быстро стягивается в овал. При формировании шаровой молнии, когда происходят дрейфовые движения плазмы, а также ее стремление перемещаться в зону более слабых магнитных полей, не исключаются обстоятельства, при которых более подвижные электронные спирали быстрее протонных перемещаются в зону центральной круговой оси широкого тороидного ионного цилиндра, где магнитное поле слабее, чем на его периферии. В результате вдоль цилиндрической оси плазменного тороида будут сосредоточены в основном электронные спирали. Вследствие этого образуется радиальное электрическое поле по всей длине замкнутого плазменного тороида. В [2, стр. 89] утверждается, что при этом вся плазма в (тороидном) цилиндре должна прийти во вращение вокруг линии цилиндрической оси, что способствует устойчивому удержанию плазмы магнитным полем и в этом случае энергию плазменного цилиндра можно рассматривать либо как энергию заряженного конденсатора, или же как кинетическую энергию вращающейся плазмы. Целиком вращающаяся плазма разрушает спиральное движение заряженных частиц плазмы, от чего собственное продольное магнитное поле не стягивает тороид в овал. Поэтому шаровую молнию иногда наблюдают в виде тороида.
Чтобы иметь представление об электрических полях, образующихся в результате разделения зарядов в плазме, воспользуемся расчетом поля, приведенным в [2, стр. 22…23]. Согласно законам электростатики, если на длине х имеется объемный заряд плотностью q, то он создает электрическое поле Е = 4πqx в абсолютных единицах СГСЭ. Если же измерять поле в вольтах на сантиметр, то оно выразится числом в 300 раз большим. Пусть в 1 см3 имеется Δn электронов сверх тех, которые точно нейтрализуют заряд ионов. Тогда плотность объемного заряда q = еΔn, где е = 4,8∙1010 ед. СГСЭ. Отсюда электрическое поле, возникшее в результате разделения зарядов равно:
Е = 1,8∙106∙Δnх В/см.
Хотя плазменный тороид формируется в разреженной плазме линейной молнии, однако, оказавшись в атмосфере, он сжимается в овал. Сжавшись в овал, шаровая молния чаще всего парит в воздухе, а это говорит о том, что ее плазма в результате сжатия приобретает плотность приблизительно равную плотности окружающего воздуха. Допустим плазма шаровой молнии содержит только однозарядные ионы воздуха, тогда (поскольку число атомов воздухе 5∙1019 атом/см3) концентрация электронов в ней составит:
n = 5∙1019 электрон/см3.
Разделение зарядов в плазменном тороиде начинается в то время, когда он еще находится в канале линейной молнии. Причиной разделения зарядов являются дрейфовые движения спиралей протонов и электронов в мощном магнитном поле линейной молнии вертикально в противоположные стороны внутри широкой ионной спирали азота и кислорода. Представим себе, что в результате разделения зарядов и последующего сжатия в плазме шаровой молнии оказалось, что на длине 1 см концентрация электронов изменилась на 1 %. Тогда Δn = 5∙1017 электрон/см3, х = 1 см, и от этого разделения зарядов возникает электрическое поле:
Е = 9∙1011 В/см.
Как видим, при однопроцентном разделении зарядов, электрическое поле, возникающее в плазме, может быть непомерно большим (если считать, что все атомы плазмы ионизованы). Но даже, если разделение зарядов в шаровой молнии составит миллиардную долю процента на длине 1 см, то и при таком ничтожном проценте в ней возникает электрическое поле 900 В/см. Казалось бы, отсюда можно заключить, что в шаровой молнии возможно образование электрического конденсатора весьма большой энергии. В шаровой молнии разность потенциалов может быть образована не только между разделяющимися при дрейфе спиралями протонов и электронов, но также и между теми же спиралями электронов и нижней половиной спиралей ионов азота и кислорода, составляющих внешнюю оболочку шаровой молнии. Однако емкость этих двух запараллеленных конденсаторов невелика, и в зависимости от размеров молнии может составить по приблизительной прикидке порядка от 1000 пФ до 5000 пФ.
Если предположить, что образовавшийся в молнии конденсатор выдержит разность потенциалов, например, 106 вольт, то и в этом случае его энергия по большей мере составит 2500 Дж, что не так много.
W = S∙cu2 = S∙5∙109∙Ф∙(106 В)2 = S∙5∙103 Дж = 2500 Дж