Литмир - Электронная Библиотека

К настоящему моменту мы рассмотрели случай дискретизации низкочастотных сигналов (видеосигналов или огибающих), когда все интересующие нас сигналы лежат в первой зоне Найквиста. На рис. 2.6 А представлен случай, когда полоса подлежащих дискретизации сигналов ограничена первой зоной Найквиста и в остальных зонах Найквиста имеются боковые частотные компоненты.

На рис. 2.6 В представлен случай, когда полоса подлежащего дискретизации сигнала полностью находится во второй зоне Найквиста. Часто процесс дискретизации сигнала, находящегося вне первой зоны Найквиста, называется субдискретизацией или гармонической дискретизацией. Обратите внимание, что боковая полоса в первой зоне Найквиста содержит всю информацию об исходном сигнале, только его местоположение изменено (порядок частотных компонентов в спектре обратный, но это легко корректируется переупорядочиванием спектральных компонентов на выходе БПФ).

На рис. 2.6 С показан вариант подлежащего дискретизации сигнала, ограниченного третьей зоной Найквиста. Обратите внимание, что в первой зоне Найквиста нет обращения частоты. Фактически, частоты подлежащих дискретизации сигналов могут лежать в любой уникальной зоне Найквиста, и боковая полоса в первой зоне Найквиста является точным представлением сигнала (за исключением обращения частоты, которое происходит, когда сигналы расположены в четных зонах Найквиста). Здесь мы можем вновь ясно сформулировать критерий Найквиста:

Для сохранения информации о сигнале частота дискретизации должна быть равной или большей, чем удвоенная ширина его полосы.

Обратите внимание, что в этой формулировке нет никакого упоминания об абсолютном местоположении полосы дискретизируемых сигналов в частотном спектре относительно частоты дискретизации. Единственное ограничение состоит в том, что полоса подлежащих дискретизации сигналов ограничена одной зоной Найквиста, то есть, полосы сигналов не должны перекрывать частоту fs/2 с любым множителем (фактически, это и является функцией антиалайзингового фильтра).

Дискретизация сигналов, лежащих выше первой зоны Найквиста, стала популярной задачей, связанной с телекоммуникациями, потому что этот процесс эквивалентен аналоговой демодуляции. Обычной практикой становится дискретизация сигналов ПЧ с последующим использованием цифровых методов для обработки сигнала с устранением таким способом потребности в демодуляторе ПЧ. Ясно, что с ростом ПЧ растут и требования к производительности АЦП. Ширина полосы входа АЦП и характеристики, связанные с допустимыми искажениями сигналов, должны быть адекватны скорее ПЧ, чем основной полосе частот. Это является проблемой для большинства АЦП, предназначенных для обработки сигналов в первой зоне Найквиста, поэтому для субдискретизации нужен АЦП, который может обрабатывать сигналы в других (более высокочастотных) зонах Найквиста.

Статическая передаточная функция АЦП и ЦАП и погрешности по постоянному току

Наиболее важным моментом, характеризующим и ЦАП, и АЦП является тот факт, что их входы или выходы являются цифровыми, поэтому сигнал подвергается квантованию. Обычно N-разрядное слово представляется одним из 2N возможных состояний, поэтому у N-разрядного ЦАП (с фиксированным источником опорного напряжения) может быть только 2N значений аналогового выхода, и он может выдавать 2N различных комбинаций, соответствующих значениям аналогового входа. Как правило, входные аналоговые сигналы существуют в виде напряжений или токов.

Разрешающая способность преобразователей данных может быть выражена несколькими различными способами: весом младшего разряда (LSB), долей от полной шкалы размером в один миллион (ppm FS), милливольтами (мВ) и т. д. Различные устройства (даже от одного производителя) специфицируются по-разному, так что для успешного сравнения устройств пользователи АЦП и ЦАП должны уметь преобразовывать характеристики из различных спецификаций. Величина младшего значащего разряда (LSB) для приборов с различной разрешающей способностью приведена на рис. 2.7.

Прежде чем рассматривать различные архитектуры АЦП и ЦАП, необходимо обсудить ожидаемые характеристики и важные аспекты спецификаций. Ниже будет рассмотрено определение погрешностей и технических требований, предъявляемых к АЦП и ЦАП. Это важно для понимания сильных и слабых сторон различных архитектур АЦП и ЦАП.

Первые преобразователи данных применялись в области измерения и управления, где точный выбор времени преобразования обычно не имел значения, и скорость передачи данных была невелика. В таких приложениях были важны характеристики АЦП и ЦАП по постоянному току, а характеристики, связанные с синхронизацией и характеристики по переменному току не имели существенного значения. Сегодня ко многим, если не к большинству преобразователей, используемых в системах дискретизации и восстановления сигнала, предъявляются жесткие требования по характеристикам на переменном токе (характеристики по постоянному току могут быть не существенны). Данные характеристики будут рассмотрены далее в этом разделе.

На рис. 2.8 представлена идеальная функция передачи однополярного 3-разрядного ЦАП, а на рис. 2.9 — однополярного 3-разрядного АЦП. В ЦАП входной и выходной сигналы квантованы, и график содержит восемь точек. Независимо от способа аппроксимации этой функции, важно помнить, что реальной характеристикой передачи является не линия, а множество дискретных точек.

Входной аналоговый сигнал АЦП не квантован, но его выходной сигнал является результатом квантования. Поэтому характеристика передачи состоит из восьми горизонтальных прямых (при рассмотрении смещения, усиления и линейности АЦП мы рассматриваем линию, соединяющую средние точки этих отрезков).

В обоих случаях полная цифровая шкала (все "1") соответствует полной аналоговой шкале минус значение младшего разряда LSB (значение, формируемое источником опорного напряжения или кратная ему величина). Это происходит потому, что, как упоминалось выше, цифровой код представляет собой нормализованное отношение аналогового сигнала к опорному сигналу.

Переходы АЦП (идеальные) имеют место, начиная с 1/2 LSB выше нуля, и далее через каждый LSB, до 11/2 LSB ниже полной аналоговой шкалы. Так как входной аналоговый сигнал АЦП может иметь любое значение, а выходной цифровой сигнал квантуется, может существовать различие до 1/2 LSB между реальным входным аналоговым сигналом и точным значением выходного цифрового сигнала. Этот эффект известен как ошибка (погрешность) или неопределенность квантования и проиллюстрирован на рис. 2.9. В приложениях, использующих сигналы переменного тока, эта ошибка квантования вызывает явление, называемое шумом квантования, которое будет обсуждаться в следующей главе.

Для преобразователей данных существует много способов цифрового кодирования: двоичное кодирование, двоичное кодирование со смещением, кодирование дополнительным кодом по основанию 1, дополнительным кодом по основанию 2, кодом Грея, двоично-десятичным кодом и другие. В примерах этой части, посвященной главным образом обсуждению проблем, связанных с аналоговым трактом преобразователей, будут использоваться простой двоичный код и двоичный код со смещением без рассмотрения достоинств и недостатков этих и любых других способов цифрового кодирования.

224
{"b":"870524","o":1}