1. С дополнительным источником напряжения в цепи связи.
2. С диодом Зенера (стабилитроном) в цепи связи.
3. С делителем напряжения и дополнительным источником.
Применение делителя с дополнительным источником требует частотной коррекции из-за опасности ограничения полосы пропускания сверху, т. к. возникает интегрирующая RC — цепь. Условие компенсации выглядит следующим образом: R2Cк = R3Cвх, откуда Cк = R3Cвх/R2. Очевидно, что такой способ коррекции несовершенен, т. к. требует точной настройки и применения каскада, свободного от эффекта Миллера.
Более совершенный каскад.
Здесь резисторы R1-R4 образуют своеобразный мост, в диагональ которого включён конденсатор С. При этом необходимо выполнение условия: R1/R2 = R4/R3. При этом ёмкость конденсатора подбирать нет необходимости, достаточно, чтобы она была несколько больше входной ёмкости. Обычно её выбирают в пределах 220…470 пФ.
4. Со схемой сдвига уровня.
Простейшая схема сдвига уровня с помощью резистивного делителя:
Напряжение сдвига уровня пропорционально резисторам R1, R2. При этом неизбежно происходит потеря коэффициента передачи. применение генератора тока вместо резистора R2 позволяет устранить этот недостаток:
При этом смещение по постоянному току зависит как от номинала резистора, так и от тока ГСТ и равно I∙R1. При необходимости подстройки напряжения смещения резистор R1 выбирают подстроечным или делают регулируемым ГСТ.
Схема сдвига уровня с коэффициентом передачи больше единицы.
Благодаря положительной обратной связи с делителем на резисторах R2, R3 превращает генератор тока на VT2, R3 в активный источник тока (АИТ).
Относительно простую схему сдвига уровня сигнала без изменения его фазы можно получить с помощью каскада с общей базой:
Применение транзистора VT3 повышает точность передачи сигнала, т. к. компенсирует изменения напряжения базо-эмиттерного перехода транзистора VT2. Вообще, строго говоря, таких транзисторов необходимо устанавливать два и последовательно — для компенсации изменения напряжения переходов транзисторов VT1, VT2.
В заключении раздела предлагается схема высококачественного усилителя мощности, разработанного на основании вышеизложенного:
Коэффициент усиления с разомкнутой петлёй ООС увеличен примерно на 10 дБ. Цепочка R13, С9, R14, С10 служит для устранения перекомпенсации входной ёмкости. В качестве источника смещения выходного каскада применён встречно параллельный генератор опорного напряжения. С целью улучшения отслеживания средней точки введён резистор R3. Питание усилителя — от источника с незаземлённой средней точкой, что избавляет от необходимости защиты громкоговорителей по постоянному току. Налаживание усилителя сводится к установке тока покоя выходных транзисторов порядка 50…70 мА подбором резистора R17 и установке половины напряжения питания на выходе усилителя подбором резистора R5 (R8), а в случае необходимости (при большом разбросе параметров транзисторов противоположных плеч) — подбором резистора R9 (R12) Частота среза усилителя без конденсатора С2 — около 3 МГц. Поэтому такой усилитель может найти широкое применение в качестве выходного усилителя мощности передатчиков проводных линей ВЧ — связи.
Однопереходный транзистор
Помимо биполярных и полевых транзисторов существует так называемый однопереходный транзистор (ОПТ), представляющий собой кристалл полупроводника, в котором создан р-n-переход, называемый инжектором:
Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название — двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов ОПТ представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда ОПТ находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение. Участок между базами образован кремниевой пластиной n-типа и имеет линейную вольт-амперную характеристику, т. е. ток через этот участок прямо пропорционален приложенному межбазовому напряжению. При отсутствии напряжения на эмиттере (относительно Б1) за счёт проходящего 12 в базе 1 внутри кристалла создаётся падение напряжения Uвн, запирающее р-n переход, При подаче на вход небольшого напряжения Uвх = < Uвн величина тока, проходящего через переход, почти не изменяется. При Uвх > Uвн переход смещается в прямом направлении и начинается инжекция носителей заряда (дырок) в базы, приводящая к снижению их сопротивления. При этом уменьшается падение напряжения Uвн, что приводит к лавинообразному отпиранию перехода — участок II на вольт-амперной характеристике:
Участок III, справа от минимума, где эмиттерный ток ограничивается только сопротивлением насыщения, называется областью насыщения. При уменьшении эмиттерного напряжения до Uвх < Uвн переход закрывается. При нулевом токе базы 2 (т. е. вывод Б2 не используется) характеристика (кривая 2) представляет собой по существу характеристику обычного кремниевого диода.
Однопереходные транзисторы применяются в различных схемах генераторов релаксационных колебаний, мультивибраторах, счётчиках импульсов, триггерных схемах управления тиристорами, генераторах пилообразного напряжения, делителях, реле времени, схемах фазового управления и др. Однако из-за малой скорости переключения и сравнительно большой потребляемой входной мощности они широкого распространения не получили.
Хотя основная функция ОПТ такая же, как и у переключателя, основным функциональным узлом среди большинства схем на ОПТ является релаксационный генератор: