15. Каскад с необычным включением по постоянному току.
Входное сопротивление такого каскада достаточно низкое.
16. Каскод с применением фототранзистора.
17. Простое устройство сложения и вычитания двух сигналов.
При подаче одинаковых сигналов на вых.2 напряжение должно отсутствовать, в противном случае нужно подобрать резистор R7.
18. Смешанный каскод
19. Каскод с двухполярным питанием.
20. Каскод с коэффициентом усиления 50 и с полосой пропускания 0…1 мГц.
Входная ёмкость — не более 20 пФ.
21. Широкополосный каскод с нейтрализацией входной ёмкости с помощью линейной следящей связи.
Входная ёмкость — около 0.1 пф.
Каскад с эмиттерными (истоковыми) связями. Дифкаскад
1. Упрощённые схемы каскадов с комбинированными связями:
Одно из основных достоинств таких каскадов состоит в том, что выходная цепь таких усилительных каскадов благодаря низкоомной связи (низкоомного выходного каскада с ОК с низкоомным входным каскадом с ОБ) слабо связана с входной. Очевидно, что в таких схемах эффект Миллера отсутствует.
Входное сопротивление каскада на биполярных транзисторах (без учёта входного делителя) равно входному сопротивлению каскада с ОК:
Rвх = rб + (1 + h21э)h11б2
Входное сопротивление каскада с полевым транзистором на входе определяется, в основном, входным делителем.
Выходное сопротивление соответствует выходному сопротивлению каскада с ОБ (О3).
Коэффициент усиления по напряжению равен произведению коэффициентов передачи каскадов с ОК (ОИ) и с ОБ (ОЗ), а так как коэффициент передачи каскада ОК (ОИ) примерно равен единице, то по существу коэффициент усиления определяется вторым множителем. Таким образом входные и выходные и выходные параметры таких каскадов соответствуют параметрам каскадов с ОК (ОС) и ОБ (ОЗ) соответственно.
2. Пример использования каскада для усиления сигналов ВЧ.
3. Широкополосный генератор.
При изменении резистора R1 в пределах 50 МОм…10 кОм имеет перестройку частоты выходного сигнала от 100 Гц до 400 кГц.
4. Высокочастотный генератор.
Период следования импульсов T = 3,1RC; частота — до 50 МГц.
5. Пример применения каскада с эмиттерными связями в фазовом детекторе.
6. Простейший балансный преобразователь частоты.
Достоинства:
1. Компенсация всех синфазных помех, в той числе сигнала гетеродина и его шумов;
2. Компенсация чётных гармоник, что приводит к уменьшению числа побочных каналов.
Более сложные смесители выпускаются в микросхемном исполнении, наиболее простой из них К174ПС1 — аналоговый перемножитель Джильберта.
7. Пример применения каскада с эмиттерными связями в электронном регуляторе усиления.
Введение обратной связи с помощью резисторов R6, R7 позволяет существенно снизить искажения сигнала. Отношение резисторов выбирают в пределах: R7/R6 = 2…10.
8. Электронный регулятор по японскому патенту.
9. Регулятор с расширенной линейной областью на 15 дБ за счёт линеаризирующих диодов
(при входном напряжении 50 мВ имеет коэффициент гармоник на выходе 0.1 %)
10. Высоколинейный детектор огибающей.
Входное напряжение не должно быть более 100 мВ. При этом с коллекторов снимается верхняя, а с эмиттеров — нижняя огибающая AM — сигнала.
11. Пример применения в усилителе — ограничителе ЧМ — сигнала.
Контур выделяет первую гармонику. Ток транзистора VT2 имеет форму, близкую к прямоугольной. В микросхемном исполнении (например, К174ХА6, К174УРЗ и др.) контур заменяют обычным резистором.
Введение каскодной развязки с нагрузкой уменьшает амплитудно — фазовую конверсию:
12. Ограничитель другого типа.
13. Дифференциальный (балансный) каскад.
Позволяет решать задачу усиления сигналов с частотой от нуля (постоянного тока) до сотен МГц и при этом:
— даёт малую ошибку разбаланса входов за счёт взаимной компенсации Uбэ;
— стабилен по температуре и по времени благодаря согласованным изменениям параметров транзисторов;
— обладает способностью усиливать только дифференциальные сигналы и "не реагировать" на синфазные напряжения;
— имеет высокую линейность и скорость нарастания, особенно каскады на полевых транзисторах (ПТ);
— обладает высокой устойчивостью за счёт того, что входной и выходной токи попадают в шины общего провода (земли) и питания, замыкаясь через генератор и нагрузку, что особенно важно в УВЧ.
Для наглядности ниже показана схема четырёхплечного моста как элемента, не обладающего дрейфом. Если мост сбалансирован, т. е. R1/R2 = R3/R4, то при изменении напряжения питания баланс не нарушается и ток нагрузки равен нулю.