h22э — выходная проводимость.
Соответственно при отсутствии Rэ Ku = —Rк/rэ.
Как видно из приведённой формулы, каскаду с ОЭ (без принятия дополнительных мер) свойственны большие нелинейные искажения, т. к. в знаменателе есть нелинейная величина rэ, имеющая сложную зависимость от тока коллектора. Уменьшить нелинейные эффекты можно по следующим направлениям:
— уменьшение влияния rэ путём установки последовательно с ним резистора Rэ (местная 0 °C по току);
— компенсация влияния rэ путём установки последовательно с Rк одного или нескольких диодов динамическое сопротивление которых равно: rд = fт/Iк, тогда Кu =(Rк + nrд)/(rэ + Rэ), где n — количество диодов;
— выбор оптимального тока коллектора, при котором минимальны изменения h21э;
— правильный выбор рабочей точки;
— применение местной 0 °C по напряжению, которая одновременно уменьшает влияние ёмкости Ск, так как шунтирует её:
— выбор оптимального сопротивления источника (например, подбором сопротивления Rn последовательно со входом;
— уменьшение влияния rэ путём замены Rк генератора тока (за счёт стабилизации тока коллектора);
— уменьшение нелинейных эффектов за счёт применения динамической нагрузки;
— взаимокомпенсация нелинейных эффектов за счёт встречной динамической нагрузки.
Усилительные свойства транзисторов сохраняются до напряжения насыщения, которое может быть в пределах от 0,2…0,3 В до нескольких вольт в зависимости от тока коллектора. Например, для маломощных транзисторов при токах больше 10…20 мА насыщение может наступать при Uкэ = (1…2) В.
Напряжение ибэ зависит от температуры и изменяется на -2.1 мВ/°С. Поэтому ток коллектора увеличивается в 10 раз при увеличении Т° на 30 °C. Такая нестабильность делает смещение неработоспособным, т. к. даже небольшое изменение температуры выводит транзистор в режим насыщения или отсечки. Входное сопротивление каскада:
Rвх = Rп + rб + h21э(rэ + Rэ) и имеет ёмкостный характер.
При отсутствии Rп и Rэ и если пренебречь rб, то Rвх = h21э; rэ = h21э∙25/Iк (мА), Ом
Отсюда видно, что Rвх величина не постоянная, меняется при изменении входного сигнала, т. к. меняется Iк.
Диапазон изменения входного сигнала при Rэ = 0, при котором сохраняется линейный режим, не превышает 2 — fт = 50 мВ.
Коэффициент передачи тока h21э не постоянен и имеет сложную зависимость для тока коллектора (для маломощных транзисторов). В зависимости от типа транзистора, максимум коэффициента передачи может наступать при токах коллектора от 1–2 мА, для маломощных транзисторов, до нескольких ампер — для мощных. В режиме насыщения наблюдается резкое падение коллекторного тока независимо от тока базы, при этом коллекторный переход оказывается прямосмещённым.
При сопротивлении источника сигнала Rr > Rвх можно считать, что источник входного сигнала электрически замкнут накоротко. При этом входной ток Iвх = Евх/Rr и практически не зависит от изменяющегося Rвх, где Евх — ЭДС источника сигнала.
Следовательно усиление будет происходить с малыми нелинейными искажениями, поскольку зависимость выходного тока транзистора от входного практически линейна, хотя входное напряжение Uвх = IвxRвx — нелинейно.
Однако не следует думать, что чем Rr больше Rвх, тем лучше. Для транзисторного каскада характерна вполне определённая оптимальная величина как внутреннего сопротивления источника сигнала, так и тока коллектора. Необходимо также учитывать, что Rк шунтируется входным делителем каскада.
Ёмкость коллекторного перехода Ск является барьерной ёмкостью и зависит от напряжения на коллекторе, т. е. носит динамический характер.
Подобно тому как Сэ уменьшается в (Кu + 1) раз в эмиттерном повторителе благодаря положительной ОС в каскаде с ОЭ Ск увеличивается во столько же раз благодаря отрицательной ОС, что равносильно подключению параллельно входу динамической ёмкости Ск∙(Кu + 1). В большинстве случаев она оказывает отрицательное влияние, однако, иногда используют и её. В этом и заключается так называемый эффект Миллера.
Частоту среза каскада снижает не только входная динамическая ёмкость, но и ёмкость нагрузки, в том числе и монтажа. Расширить полосу пропускания можно следующим образом:
— Уменьшить Rн при одновременном увеличении Iк, т. к. усиление прямо пропорционально Iк/Св;
— применить транзисторы с малыми ёмкостями переходов;
— отделить нагрузку эмиттерным повторителем.
Как отмечалось выше, простейший каскад не обладает термостабильностью, поэтому практически не используется. Вот один из способов так называемой коллекторной термостабилизации с применением отрицательной обратной связи по напряжению:
Если взять исходное напряжение Uк равным 0,5Еп, то Rк = 0,5Eп/Iк, сопротивление в цепи базы Rб = 0,75Еп/Iб = 0,5Еп∙h21э/Iк.
2. Пример коллекторной стабилизации с исключением влияния ООC по переменному току.
Базовый резистор заменён Т-мостом, где C = Ku/F2pH∙pR1. Обычно R1 принимают равным R2.
3. Каскад с компенсационным смещением на согласованном транзисторе.
Используется для усиления относительно слабых сигналов. Изменение температуры не влияет на работу схемы.
Аналогичный каскад с трансформаторной связью на входе.
4. Каскад с эмиттерной стабилизацией с помощью ООС по току.