Литмир - Электронная Библиотека

Рис. 25

Это же относится к притяжению двух постоянных магнитов. На рис. 26 приведен пример притяжения двух постоянных дисковых магнитов.

Рис. 26

У дисковых магнитов существует, также второе положение, при котором оси циркуляции двух взаимодействующих магнитов максимально совмещены — притяжение противоположных полюсов. Нетрудно видеть, что и в этом случае оси циркуляции также максимально совмещены. В случае двух кольцевых магнитов, из которых один (меньший) помещен внутрь отверстия в большем кольцевом магните, меньший магнит притягивается к внутренней поверхности большого кольца в полном соответствии с изложенным принципом (Рис. 27).

Рис. 27

To же относится к магнитам с любой конфигурацией магнитного поля. Одним из примеров является силовое взаимодействие двух проводников с током.

В случае однородного магнитного поля ось циркуляции находятся в бесконечности. Этот случай может быть представлен как наложение двух взаимно противоположных циркуляций с осями расположенными в бесконечности справа и слева от взаимодействующего с этим полем магнита (проводника). Если вектор В направлен вертикально в плоскости рисунка (Рис. 28), то циркуляция, создаваемая левой осью (находящейся в бесконечности) направлена против часовой стрелки, а циркуляция, создаваемая правой осью — по часовой стрелке.

Рис. 28

Тогда на источник, создающий циркуляцию магнитного поля будет действовать сила направленная в сторону оси соответствующей циркуляции. В случае рамки с током, она будет поворачиваться так, что ее плоскость станет перпендикулярна вектору В и растягиваться в этой плоскости. В общепринятом изложении, в данном случае на проводники рамки действует сила Ампера и вектор магнитного момента р принимает положение параллельное вектору В. Но, как можно видеть, и этот случай полностью вписывается в вышеизложенный принцип взаимодействия магнитных полей.

Таким образом, принципы взаимодействия двух источников магнитного поля могут быть сформулированы следующим образом:

• Сила взаимодействия (притяжения или отталкивания) источников магнитного поля, которые создают его циркуляцию, направлена в сторону осей циркуляции и, в случае притяжения, стремится их совместить.

• Это относится к единичному элементу оси циркуляции (в частном случае, к элементу проводника с током). Вектор силы взаимодействия перпендикулярен к элементу оси (проводника). В случае непараллельности плоскостей осей циркуляции возникает крутящий момент, стремящийся совместить оси в одной плоскости. Поворот и перемещение рамки с током в магнитном поле является частным случаем, в котором каждый элемент рамки участвует в этом процессе.

• Таким образом, источники магнитного поля, находящиеся в свободном пространстве, поворачиваются до совмещения осей циркуляции в одной плоскости, в положение, когда циркуляции направлены в одну сторону и, далее, стремятся совместить оси циркуляции.

• Так как постоянные магниты содержат две разнесенные в пространстве оси циркуляции с противоположным направлением циркуляции магнитного поля, то вещество магнитов находится в растянутом напряженном состоянии. Такой магнит имеет (в ближней зоне) два выраженных магнитных момента, направленных в противоположные стороны. В дальней зоне магнитное поле сглаживается, магнитные моменты складываются, и поле кольцевого магнита становится похожим на поле шарового магнита с полюсами на оси.

• Постоянные магниты существенно отличаются от кольцевого проводника с током, у которого есть только одна ось циркуляции. Кольцевой проводник (виток) с током может имитировать только шаровые и цилиндрические магниты, где внутренняя ось циркуляции вырождена в точку.

• Полюса постоянного магнита находятся на поверхности, разделяющей области циркуляции (поверхность перемены направления циркуляции).

• В случае, когда один из источников имеет однородное магнитное поле (ось циркуляции находится в бесконечности), линейные силы отсутствует (скомпенсированы), но создается крутящий момент, стремящийся установить оси циркуляции параллельно друг другу (как стрелка магнита в поле Земли).

• Вышеуказанные положения и выводы относятся к статическому взаимодействию (фарадеев механизм), хотя случай притяжения двух проводников (закон

Ампера) может быть, также, истолкован как проявление лоренцева механизма (см. выше).

11. Основные выводы

• Было показано, что ряд общепринятых законов и положений электромагнетизма нуждается в уточнении и дополнении.

• Модифицированный принцип Ленца может быть сформулирован следующим образом: «Ток, создаваемый наводимой в проводнике ЭДС вызывает циркуляцию магнитного поля, которая стремиться скомпенсировать изменение циркуляции в месте расположения проводника».

• Принцип механического взаимодействия источников магнитного поля может быть сформулирован следующим образом: «Сила взаимодействия (притяжения или отталкивания) источников магнитного поля, которые создают его циркуляцию, направлена в сторону осей циркуляции и, в случае притяжения, стремится их совместить».

• В соответствии с вышеизложенным принципом, возможно наведение ЭДС в тангенциальных проводниках («тангенциальная индукция»), когда вектор скорости относительного движения магнитное поле — проводник совпадает с направлением проводника. В этом случае, согласно общепринятым формулам электромагнетизма, такие проводники при протекании по ним тока не должны создавать крутящий момент.

• Был испытан ряд электрогенераторов, использующих эффект «тангенциальной индукции». Было показано, что эти электрогенераторы могут быть обращены и использованы в качестве электромоторов.

12. Заключение

Проведенная серия экспериментов по исследованию взаимодействия движущегося (вращающегося) источника постоянного магнитного поля с проводниками позволила уточнить принципы наведения фарадеевой ЭДС для случая движущегося носителя магнитного поля, уточнить принцип Ленца и открыть механизм тангенциальной индукции, что, в свою очередь, позволило предложить ряд электрических машин, использующих этот принцип. Прототипы этих машин были созданы и испытаны автором.

13. Литература:

1. Muller, F.J., "Unipolar Induction", Galilean Electrodynamics, Vol. 1, p. 27, (1990).

2. Jorge Guala-Valverde and Pedro Mazzoni, "The Unipolar Dynamotor: A Genuine Relational Engine", APEIRON Vol.8 Nr.4, October 2001.

3. Thomas E. Phillips, Jr., "Observations of the Marinov Motor", APEIRON Vol.5 Nr.3–4, July — October 1998

4. J.P. Wesley, "The Marinov Motor, Notional Induction without a Magnetic В Field", APEIRON Vol.5 Nr.3–4, July — October 1998.

5. И.В. Савельев. "Курс общей физики", "Наука" 1978 г.

6. Б.М. Яворский, А. А. Детлафф. "Справочник по физике", "Наука" 1979 г.

7. Э. Парселл, «Электричество и магнетизм», Берклеевский Курс Физики, том II, Наука, 1983.

134
{"b":"870521","o":1}