Метод секвенирования ДНК, основанный на терминации синтеза дидезоксинукпеотидтрифосфатами
Рассмотрим определение последовательности нуклеотидов в клонированном фрагменте ДНК. Клонированный фрагмент находится в так называемой векторной молекуле ДНК — молекуле, которая позволяет ввести его в клетку (обычно это клетка бактериальная, но иногда используются и дрожжевые клетки). Все работы по секвенированию генома человека прошли при участии бактериальных векторных молекул. Участок вектора, прилежащий к вставке, содержит последовательность нуклеотидов, комплементарную универсальному секвенирующему праймеру. С этого праймера инициируется синтез ДНК in vitro, который с первого нуклеотида будет идти по матрице клонированного фрагмента ДНК человека. Универсальных праймеров используется два, один к последовательности вектора прилежащей к одному концу вставки, другой праймер к последовательности вектора прилежащей к другому концу вставки. С одного из праймеров клонированный фрагмент секвенируется с одной стороны, а с другого праймера — с другой стороны.
Участки молекулы ДНК распознаваемые праймерами для секвенирования, присоединены к исследуемому фрагменту ДНК путем. Исследуемый фрагмент ДНК вставляют в векторную молекулу ДНК. Участки вектора, прилежащие к вставке, содержат последовательности нуклеотидов, комплементарные универсальным секвенирующим праймерам — левому и правому. С этих праймеров инициируется синтез ДНк in vitro
Вектор у нас один и тот же, а вставок — миллионы, но все они секвенировались с одной и той же пары праймеров. Основная часть генома была секвенирована при клонировании фрагментов в 2 тысячи пар нуклеотидов, потому что тысяча читалась с одной стороны и тысяча — с другой. Каждая точка генома человека была просеквенирована несколько десятков раз в составе разных клонированных молекул ДНК. То есть расстояние в геноме между концами клонированных и секвенированных фрагментов ДНК составляло меньше 200 пар нуклеотидов. От каждой точки старта было прочитано около 1000 нуклеотидов. Из всего этого набора «текстов» воспроизводилась структура генома человека. Но собрать эти 1000-буквенные сиквенсы в контиги длинной в миллионы букв удалось лишь на основе того, что большая часть фрагментов была предварительно картирована относительно хромосом человека. Без картирования сиквенс мог попасть в повторяющийся участок генома, а продолжение сиквенса из такого участка имеет столько вариантов продолжений, сколько раз повтор присутствует в геноме человека (некоторые повторы — миллион раз). Поэтому сначала устанавливали последовательность расположения клонированных фрагментов в геноме. Это было сделано для фрагментов размером около 200 тыс пар нуклеотидов, а уже затем их секвенировали.
Процесс секвенирования по методу Сенгера может быть автоматизирован. Механизм представлен на следующем слайде.
Ha слайде виден праймер, синтез с которого идет влево. У нас есть дидезоксинуклеотидфосфаты Т, А,С и G. Каждый из них занимает свою позицию во фрагменте синтезируемом по исследуемой матричной нити. На предыдущем слайде каждой букве соответствовала отдельная дорожка геля, их всего четыре. Если каждую из букв терминирующих синтез пометить в свой цвет, то все терминаторы можно объединить в одной пробирке и фракционировать продукты в одной дорожке. Обрыв синтеза в позиции данной буквы даст фрагмент со своим положением в геле после фракционирования. Каждое положение обрыва будет характеризоваться цветом той буквы терминатора, на которой произошел обрыв. В ходе фракционирования терминированных фрагментов лазер будет фиксировать на детекторе последовательные пики — какая прошла полоса по счету, и какого она цвета. Далее эта последовательность пиков дешифруется в последовательность нуклеотидов в молекуле ДНК. Точность сиквенса (установления того, какая именно буква терминировала синтез в данной позиции) определяется соотношением высот пиков соответствующих разным буквам в одной и той же позиции секвенируемого фрагмента. Между двумя пиками разных цветов в одной позиции было заданное дискриминирующее значение. Техника отрабатывалась так, что буква считалась достоверно установленной для данной позиции, если основной пик в этой позиции был выше других в заданное количество раз.
Бактерия Н. influenzae была первым свободно живущим организмом, геном которого был полностью секвенирован. Поскольку геном бактерии маленький, около тысячи нуклеотидов, и повторов нем мало (да и короткие они), то предварительное картирование клонированных фрагментов ДНК не понадобилось — эти фрагменты сразу сиквенировались.
Бактерия Н. influenzae была первым свободно живущим организмом, геном которого был секвенирован (TIGR, США)
Такая работа была проведена в институте генетических исследований TIGR под началом Крега Вентера. Вентер затем организовал фирму Селера, секвенировавшую геном человека, где он применил ту же схему секвенирования что и для бактерии. Причем деньги он взял у частных фирм, так как государство не верило, что у него что-нибудь получится.
Мировое сообщество предварительно использовало генетическую и физическую карты, относительно которой была выстроена последовательность перекрывающихся фрагментов клонированной ДНК (контиг), предназначенной для секвенирования. То есть сиквенс генома человека был собран из фрагментов правило благодаря использованию упорядоченного набора клонов и установлению последовательности нуклеотидов картированных клонов.
Вентер же, в отличие от мирового сообщества, использовал случайный набор клонов и попытался восстановить полную последовательность нуклеотидов прямо из сравнения сиквенсов всей кучи фрагментов. На бактерии у него это удалось, но на человеке это сработало лишь потому, что он использовал публично доступные данные от мирового сообщества о том, какие молекулы, где расположены в геноме человека.
Секвенирование всего генома может быть основано на детальной генетической и физической карте, относительно которой выстроена последовательность перекрывающихся фрагментов клонированной ДНК (контиг), предназначенной для секвенирования
Вентер опубликовал свою работу на месяц раньше, чем мировое сообщество, потому что он ничего не картировал, а использовал секвенирование совсем коротких рекомбинантных молекул. Общую длина секвенированных фрагментов ДНК была у Вентера в пять раз больше, чем сделало все мировое сообщество. Используя данные мирового сообщества о картированных фрагментах, Вентер смог восстановить в единую последовательность нуклеотидов все то, что он насеквенировал. Если бы данных мирового сообщества не было бы, то вся его работа была представлена короткими отрезками, которые бы разветвлялись, из-за того, что в геноме находятся повторы.
В результате проделанной работы вышло две статьи: статья Вентера в журнале Science и статья Лэндера — лидера мирового сообщества — в журнале Nature.
Проект генома человека начат в 1990 г. Первая (черновая) версия последовательности нуклеотидов была закончена в 2000 г. Конечная версия, которая больше не будет совершенствоваться (названная Build35) — закончена в 2004 г.