Генератор пилообразного напряжения собран на транзисторе УЗ с RC цепочкой (R3R5C1) и стабилитронах V1 и V2. Принцип его работы следующий: конденсатор С1 периодически заряжается через резисторы R1 и R5, а затем быстро разряжается через транзистор УЗ в то время, когда он открыт. Постоянная времени цепи R3R5C1 выбрана такой, что за время одной полуволны выпрямленного напряжения конденсатор С1 успевает зарядиться лишь до напряжения +15 В. На конденсаторе получается напряжение, близкое к пилообразному и синхронированное с напряжением сети. Синхронизация обеспечивается отрицательными импульсами, снимаемыми с делителя напряжения R1R2 и стабилитронов V1, V2, открывающих транзистор V3 в конце каждого полупериода пульсирующего выпрямленного напряжения. На рис. 2 приведены временные диаграммы, поясняющие работу генератора пилообразного напряжения и схемы управления тиристором. Стабилитроны V4, V5 предохраняют по следующие каскады от перегрузок по напряжению. Транзистор V6, включенный по схеме эмиттерного повторителя, служит для согласования.
Рис. 2. Временные диаграммы напряжений:
а — генератора пилообразного напряжения; б — устройства управления тиристором при верхнем положении движка резистора R5; в — устройства управления тиристором при нижнем положении движка резистора R5
Устройство управления тиристором состоит из дифференциального каскада, собранного на транзисторах V7 и V8, и усилителя тока, выполненного на транзисторе V9. Это устройство вырабатывает прямоугольные импульсы, длительность которых меняется в зависимости от напряжения на базе транзистора V8 и пилообразного напряжения, поступающего на базу транзистора V7. В течение каждой полуволны выпрямленного напряжения тиристор включается на большее или меньшее время, благодаря чему и достигается плавная регулировка мощности.
Для поддержания постоянной температуры или освещенности используется дифференциальный каскад, собранный на транзисторах V11 и V12, в одно плечо которого включен терморезистор R10, а в другое — переменный резистор R15, задающий нужную температуру. С повышением температуры уменьшается сопротивление терморезистора и соответственно напряжение на базе транзистора V11. Это напряжение сравнивается с напряжением, снимаемым с потенциометра R15. Разность напряжений усиливается дифференциальным усилителем и подается на базу транзистора V8, что приводит к уменьшению выделяемой на нагрузке мощности. С понижением температуры на базу V8 подается меньшее напряжение и соответственно мощность в нагрузке возрастает.
Если необходимо поддерживать постоянную освещенность, вместо резистора R10 устанавливается фоторезистор или фотодиод, включенный в обратном направлении. В этом случае конденсатор С2 следует исключить, а номинал резистора R15 подобрать экспериментально.
При использовании УРМ с ЦМУ можно применять различные схемы фильтров и детекторов. Необходимо только учесть, что для нормальной работы детектированный сигнал должен иметь постоянную составляющую напряжения +8 В. В качестве примера предлагается активный фильтр на трех транзисторах с Т-образным мостом и детектором для одного из каналов ЦМУ (рис. 3).
Рис. 3. Активный фильтр и детектор канала ЦМУ
Генератор пилообразного напряжения и блок питания будут общими для всего устройства, а каскад на транзисторах V11, V12, включая резистор R16, следует исключить. Выход детектора каждого канала необходимо соединить с базой транзистора V8 УРМ соответствующего каскада управления тиристоров, а базы транзисторов V7 УРМ соединить вместе.
Настройку УРМ необходимо начать с тщательной проверки монтажа и только после этого подать питание. Блок питания должен вырабатывать напряжения, указанные в схеме, с точностью ±20 %. Далее следует установить переключатель S1 в положение «Плавно», в качестве нагрузки включить лампу накаливания HI на 220 В, движок потенциометра R5 установить в нижнее по схеме положение. Передвижением движка подстроечного резистора R16 добиться такого положения, при котором лампа находится на пороге загорания, но не светится. При этом на базу транзистора V8 должно быть подано напряжение около +8 В. Затем, передвигая движок потенциометра R5, наблюдать за изменением яркости лампы: в нижнем положении движка лампа гореть не должна, а в верхнем — должна светиться полным накалом. Если плавно регулировать яркость не удается, необходимо подобрать сопротивление резистора R9, однако делать его менее 100 Ом не рекомендуется. После этого можно приступать к проверке работы УРМ в режиме термостабилизации и градуировке шкалы установок температуры. Для этого в сосуд с водой следует поместить какой-либо нагреватель, например кипятильник, термометр и терморезистор. Выводы терморезистора не должны вступать в контакт с водой, места их соединения с проводами можно залить эпоксидной смолой. Затем установить тумблер S1 в положение «Т° пост.», а движок резистора R15 — в верхнее по схеме положение, и опускать его до тех пор, пока не загорится лампа. При этом надо помешивать воду и следить за показаниями термометра. По истечении некоторого времени температура воды должна установиться и более не подниматься. На шкале резистора R15 нанести риску, соответствующую полученной температуре, перемещая движок резистора R15 далее, нанести метки, образующие шкалу установок температуры.
Для проверки работы активного фильтра ЦМУ (см. рис. 3) по постоянному току необходимо замерить напряжение на базе транзистора VI, коллекторе V2 и эмиттере V3. Все они должны быть равными приблизительно половине напряжения источника питания (около + 5 В). Емкости конденсатора С для фильтра рас считываются исходя из формулы
fрез = 0,16/RC.
Так, для f = 100 Гц С = 0,16 мкФ, для f = 300 Гц С = 0,05 мкФ, для f = 10 кГц С = 1600 пФ. Для согласования работы детектора с регулятором мощности на выход детектора следует подать постоянное смещение + 8 В с помощью подстроечного резистора R12.
УРМ собран из широко распространенных элементов. Транзисторы V3, V6, V7, V8, указанные в схеме, можно заменить на любые другие германиевые транзисторы с аналогичными параметрами. Все постоянные резисторы типа MЛT, переменные — типа СП-I. Необходимо учесть, что резисторы R1 и R3 должны быть рассчитаны на мощность не менее 2 Вт. Электролиты К.50-6, но возможны и другие типы. Транзисторы V11 и V12 необходимо подобрать по коэффициенту усиления. Еще лучше использовать вместо них микросхему К1НТ291 или КШТ591 с любым буквенным индексом. Трансформатор в УРМ — типа ТН12, можно взять и другие понижающие трансформаторы с напряжением вторичной обмотки 13…14 В. Терморезистор СТЗ-14, но можно и другой, подойдет также переход эмиттер-база германиевых транзисторов. В качестве фотодатчика может быть использован фотодиод ФДК226 или фоторезистор СФ2-4. В ЦМУ в качестве развязывающего трансформатора использован согласующий трансформатор от приемника «Альпинист». Если необходимо регулировать мощность до 500 Вт, то вместо тиристора Т25 можно установить тиристор КУ201 или КУ202 с любыми буквенными индексами. Регулируемую мощность каждого канала можно увеличить от 3 до 10 кВт при использовании более мощных диодов, например В25, В50, и тиристоров (Т50, Т100). Схема УРМ при этом не изменится, но может потребоваться снижение номинала резистора R9 до 80…50 Ом, при этом коммутация силовой части прибора (сетевой шнур, диодный мостик V19…V22, цепь тиристора) должна быть выполнена проводом сечением не менее 2 мм2, например МГШВ 2,5. К конструкции устройства предъявляются следующие основные требования по безопасности: корпус устройства должен быть изолирован от всех токоведущих частей. Все пайки и соединения должны быть выполнены качественно и надежно. При настройке и эксплуатации УРМ следует соблюдать правила техники электробезопасности, так как цепи УРМ гальванически связаны с сетью. Нельзя производить пайку при включенном питании.