Литмир - Электронная Библиотека

Сам же переход к сравнению изменений движений тела в четырехмерном пространстве вместо сравнения инерциальных систем примечателен тем, что один единственный наблюдатель, учитывая свойство тождественности по определению инерциальных систем координат и первый постулат специальной теории относительности, не нуждается во втором движущемся относительно него наблюдателе, чтобы определить ход часов у этого наблюдателя. Вполне достаточно использовать собственные часы и определять влияние конечности скорости света на результаты его наблюдения за движущимся объектом на основании их показаний. Таким образом, задача преобразования координат может быть заменена задачей определения особенностей наблюдения неподвижным наблюдателем движущегося объекта при условии конечности скорости света. Для решения такой задачи принципиально необходимо, чтобы соблюдались два положенных в основу специальной теории относительности условия: о тождественности (неотличимости) хода «внутренних» часов в любой из сравниваемых четырехмерных систем координат и о зависимости при переходе к трехмерному пространству хода движущихся часов от хода часов неподвижного наблюдателя и изменения положения тела в трехмерном пространстве. И для такой задачи нет необходимости соблюдения одновременности происходящих с телом изменений положения с показаниями часов у наблюдателя, а также начального нахождения тела в месте расположения неподвижного наблюдателя. Данные ограничения необходимы только в случае сравнения абсолютных значений координат, а не их бесконечно малых изменений. Данное обстоятельство обусловлено как однородностью времени, так и тем, что мы имеем дело с инерциальным движением тела в трехмерном пространстве с постоянной скоростью.

Из-за конечности скорости света кроме эффекта изменения масштаба времени существует также эффект отставания показаний часов на удаленном от наблюдателя объекте, но этот эффект из-за своей очевидности в специальной теории относительности и в данной книге дополнительно не рассматривается.

Подчеркнем, что Альберт Эйнштейн выбрал лишь одну из возможных форм преобразования координат, аналогично которой сконструировал инвариантные преобразования энергии и импульса в различных инерциальных системах координат. Данный прием нахождения инвариантных выражений (групп Лоренца) был распространен на все физические законы и получил в дальнейшем признание в виде принципов лоренц-инвариантности и лоренц-ковариантности. Но для таких соотношений невозможно применить указанную выше альтернативную форму преобразований, так как при этом теряется свойство инвариантности. Казалось бы, выбор единственно возможной формы инвариантного интервала очевиден, но так ли это?

Указанные выше определения времени собственного получены в результате использования простых геометрических правил для прямоугольных систем координат и требуют постулирования постоянства скорости света в любых системах отсчета. И предопределены они только тем обстоятельством, что скорость света является величиной конечной. Однако это сказывается не на характере протекания физических процессов, а на их визуальном исследовании. Принцип же лоренц-ковариантности считается проявлением общего закона природы, который не зависит от того, наблюдается или нет какой-либо физический процесс.

К каким же последствиям приводит возведение в принцип (закон природы) лоренц-инвариантных преобразований?

В соответствии с принципом эквивалентности (первый постулат специальной теории относительности) любая инерциальная система имеет право считаться лабораторной, то есть быть неподвижной системой координат. Более того, все лабораторные инерциальные системы должны быть неразличимыми. В противном случае существовала бы единственная выделенная лабораторная система координат, что противоречит первому постулату специальной теории относительности. Следовательно, длительность любого физического процесса должна быть той же самой во всех неподвижных инерциальных системах координат. В то же самое время, если какая-либо координатная система является лабораторной, длительность ней какого-либо процесса должна отличаться от сравниваемой с ней длительности этого процесса в других инерциальных (движущихся) системах с точки зрения неподвижного наблюдателя. При этом длительность любого процесса замеряется с помощью длительности особого эталонного процесса – одной секунды.

По определению, одна секунда – это интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, находящегося в покое при 0°К. И данное определение является однозначно справедливым в любой лабораторной системе координат.

Теория относительности и сверхсветовая скорость - _50.jpg

количеству периодов выбранного излучения является объективной и применимой как для установления величины одной секунды, так и для определения длительности любых иных процессов.

У нас имеются две четырехмерные системы координат X и X, в каждой из которых одновременно наблюдается процесс движения из центров указанных систем одного и того же тела. Под термином «наблюдение за движением» понимается фиксация изменения положения тела относительно центра системы координат, осуществляемый, например, по изменению гравитационного или электрического потенциала поля, создаваемого телом, а не визуальное наблюдение. В последнем случае из-за конечности скорости света пришлось бы ограничиться только досветовыми скоростями изменения положения тела. При наблюдении движения обязательным является условие инвариантности интервала Эйнштейна, то есть равенства пройденных телом путей в каждой из систем координат. В системе X длина пути задается как расстояние от центра системы до точки с координатами

Теория относительности и сверхсветовая скорость - _51.jpg
, а в системе X – до точки с координатой
Теория относительности и сверхсветовая скорость - _52.jpg
. Координаты
Теория относительности и сверхсветовая скорость - _53.jpg
и
Теория относительности и сверхсветовая скорость - _52.jpg
можно выразить через независимые в трехмерном пространстве параметры t и t’ соответственно, а расстояние
Теория относительности и сверхсветовая скорость - _54.jpg
через произведение
Теория относительности и сверхсветовая скорость - _55.jpg
. Тогда в соответствии со специальной теорией относительности можно записать:
Теория относительности и сверхсветовая скорость - _56.jpg
, и
Теория относительности и сверхсветовая скорость - _57.jpg
, причем
Теория относительности и сверхсветовая скорость - _58.jpg
. Отсюда прямо следует, что
Теория относительности и сверхсветовая скорость - _59.jpg
. Но, поскольку
Теория относительности и сверхсветовая скорость - _60.jpg
, а
Теория относительности и сверхсветовая скорость - _61.jpg
, то
Теория относительности и сверхсветовая скорость - _62.jpg
. Для пространства с псевдоевклидовой метрикой, используемой в специальной теорией относительности
Теория относительности и сверхсветовая скорость - _63.jpg
. Причем здесь время t и t – это время протекания одного и того же процесса. В этом случае за время t, равное 1 секунде, по мнению наблюдателя из системы X наблюдатель из системы X должен насчитать большее число периодов излучения атома цезия-133, чем он может насчитать, если его время t’ равно одной секунде, используемой как эталон времени с системе X. Принципиально важно, что с переходом от использования координат
Теория относительности и сверхсветовая скорость - _64.jpg
к независимым переменным t и t’ нами совершен переход от сравнения неподвижных относительно друг друга четырехмерных систем X и X к сравнению трехмерных инерциальных систем отсчета. Но в каждой инерциальной системе координат единица измерения времени определяется одним и тем же числом периодов излучения атома цезия-133. Следовательно, так как
Теория относительности и сверхсветовая скорость - _63.jpg
, то по мнению неподвижного наблюдателя движущийся наблюдатель использует более короткую единицу времени и один и тот же процесс на движущемся теле протекает быстрее, чем на неподвижном объекте. А это прямо противоречит экспериментально подтвержденным данным о замедлении длительности протекания процессов на движущемся объекте. Удивительно, но в современной физике именно этот эффект считается теоретически доказанным. Правда, для такого «доказательства» приходится считать движущуюся систему координат неподвижной и для описания движения тела ориентироваться на мнение наблюдателя, в системе которого движение тела осуществляется только по временной координате. А для трехмерных систем координат описывать движение тела, наблюдая за телом, находящимся в состоянии покоя, является недопустимым с точки зрения научной логики. Но это обстоятельство почему-то не привлекает внимания – так велико желание доказать правомерность преобразований Лоренца.

4
{"b":"866921","o":1}