Палеоботаники разбили гипотезу И. Вальтера и успокоились. Больше попыток объяснить световой парадокс не было. Поразительное однообразие карбоновой растительности осталось необъясненным.
Позднее палеоботаники бросились в другую крайность. Некоторые из них объявили, что климат в каменноугольном периоде в самых центрах угленакопления, например в Донбассе, был не влажным, а сухим!
Это интересная история, и на ней тоже стоит остановиться, ибо из нее вытекает один важный вывод: самые, казалось бы, неопровержимые свидетели климатов прошлого - растения могут вводить в заблуждение, рисовать ложную палеогеографию тех или иных эпох.
Ботаники давно уже убедили всех, и себя в том числе, что сухолюбивое пустынное или степное растение можно узнать сразу: у него мелкие кожистые листочки, очень толстая кожа на листьях, устьица - приспособления для испарения листьями влаги - глубоко спрятаны. У некоторых (у кактуса, например) - мясистые, накапливающие влагу стебли. Часты у сухолюбивых растений колючки.
Вооруженные этими знаниями, палеоботаники приступили к изучению ископаемых растений, которые были доставлены из каменноугольных бассейнов. Угленакопление традиционно считалось возможным только в условиях роскошного влажного леса, болота (уголь, прежде чем стать углем, обязательно должен побыть торфом). Но... начались парадоксы. Одно растение за другим палеоботаники определяли как сухолюбивое по уже известным нам основным признакам.
Выходы из этого положения предлагали разные. Один геолог предложил считать, что в карбоне Донбасса очень влажный климат, с болотами и роскошными лесами, чередовался с очень сухим! Для географа, конечно, подобная ситуация немыслима. «Противоречие не столько разрешалось, сколько замазывалось неоправданно сложными построениями»,- пишет о таких попытках выйти из парадокса палеоботаник С. Мейен, который, кстати, сам немало думал над этой проблемой и, кажется, нашел выход. Выход он нашел... на современных болотах. Вот уж где воды в избытке, и именно там на кочках растения часто имеют такой вид, будто они сухолюбивы. Скажем, клюква. Попадись ее темно-зеленые мелкие плотные листочки палеоботанику в отложениях, скажем, третичного периода, да не знай он клюквы (случай, вероятно, невозможный)- определил бы он клюкву как обитателя полупустыни...
Вот ведь каким странным образом смыкаются подчас крайности: одни и те же признаки для растений противоположных по сути сред обитания. Впрочем, так ли уж противоположных? Еще с конца XIX века существует в науке понятие физиологической сухости. Ведь есть вода и вода. Человек погибает от жажды, оказавшись посреди океана без запаса пресной воды. Растения, обитающие в солончаках, по берегам соленых черноморских лиманов, тоже живут «по колено» в воде, но они жаждут, им не хватает настоящей влаги. Может, и вода болот чем-то плоха? Явление физиологической сухости еще плохо изучено, и все же не оно, видимо, определяло и определяет сухолюбивый облик растений в болотах. Однажды заметили, что в том же болоте растения, оказавшиеся в тени, теряют свой обычный засухолюбивый облик. Так был найден главный виновник пустынного облика болотных растений. Свет!
Еще один парадокс: ведь свет - источник жизни для земного растения. Но проверка подтвердила первую догадку. Растение может вынести яркий свет, но при этом у него возрастет потребность в азотистых веществах. Между тем вопреки сенсационным памятным открытиям некоторых «ученых» растения не могут сами усваивать азот воздуха. А вот азотистых веществ в болотных почвах как раз острый дефицит.
Видимо, действительны обе причины вместе - избыток света и недостаток азотистых веществ, то есть некоторая физиологическая сухость болот. Именно обе эти причины в их сочетании и способны дать картину «засухи» в болотах каменноугольного периода. Выводы ясны: во-первых, кордаиты пермокарбона жили-таки «по колено» в воде и, во-вторых, их освещало яркое солнце.
Этот второй вывод тоже очень важен. Ведь до недавних пор некоторые палеоклиматологи считали, что атмосфера планеты лишь в последние сто миллионов лет стала достаточно прозрачной, что и в мезозое, и в палеозое преобладала пасмурная погода, небо было закрыто облаками.
И вот оказывается, что это не так, что солнечный световой режим триста миллионов лет назад мало отличался от современного. Значит, основные условия жизни на Земле в основных чертах сформировались давно, и современный облик мира дает все-таки неплохое представление о давних временах. Философ сказал бы, что в данном случае восторжествовал принцип актуализма, и был бы прав, хотя правы были бы и те ученые, которые добавили бы: а зато в других случаях в другие времена огульное применение этого принципа может и ввести в заблуждение.
Карбон оставил огромные залежи угля. Углерода. Откуда растения его брали? Из атмосферы, разлагая углекислый газ. При этом освобождался кислород. Если бы сейчас сжечь весь уголь, отложенный в карбоне, этого хватило бы на то, чтобы превратить весь кислород атмосферы обратно в углекислоту.
Откуда же столько углекислого газа взялось в карбоне? Может быть, атмосфера Земли была углекислой, как современная венерианская?
О, это бы многое попутно объяснило. Например, необычайно теплый климат карбона: СО2 создает парниковый эффект, задерживает солнечное тепло в атмосфере. Но... и здесь все не просто!
Охлаждает углекислый газ?
Землю по ее климатам можно разделить на три пояса. Два холодных - северный и южный и один, в середине,- экваториальный, жаркий. Здесь, у экватора, океан теряет огромное количество воды, она испаряется. Но испаряется только вода, соли остаются. Это значит, тяжелая, насыщенная солями теплая вода должна непрерывно опускаться на дно, вытесняя менее соленые и более холодные слои. Значит, у экватора океан на всю свою глубину должен быть прогрет равномерно.
Накапливаясь, тяжелая пересоленная экваториальная вода должна катиться по дну к полюсам, прогревая по пути океаны, а значит, города и страны. Опресняясь и становясь поэтому легче у полюсов, вода должна подниматься и течь обратно к экватору, чтобы завершить круг циркуляции. По всей Земле должен установиться довольно теплый ровный климат, как в карбоне. Никаких бурь и ураганных ветров: малые перепады температуры и давления не способствуют мощным воздушным течениям.
Читатель, вероятно, уже понял, что в действительности весь этот механизм не работает. Вода на дне океанов не теплая, холодная. И климат вовсе не такой приятный. Что-то мешает... Что? Это что-то - как раз углекислый газ, про который идет дурная слава парникового газа № 1. Благодаря ему планетарная циркуляция воды носит другой характер.
...Углекислый газ растворяется в воде. Причем очень неплохо. В среднем на нашей планете содержание СО2 в морской воде в пятьдесят раз выше, чем в воздухе. Но это в среднем. А лучше всего углекислый газ, как и все газы, растворяется в холодной воде. Это значит, что у полюсов океаны жадно «сосут» углекислоту из атмосферы. Газированная вода тяжелее негазированной. Охлажденная к тому же полярными морозами, она опускается на дно. Холодная, насыщенная газом вода накапливается и устремляется к экватору, охлаждая океаны. Именно поэтому океан на больших глубинах везде, даже у экватора, «полярно» холоден!
У экватора холодная вода глубин не может сразу вырваться на поверхность: встречный ток теплых соленых вод все же ослабляет ее напор. Поэтому глубины океанов в нашу эпоху очень медленно перемешиваются. И вообще меридиональная циркуляция затруднена. Так и образуется современный климат Земли, резко контрастный: очень холодный у полюсов, очень теплый у экватора. Так было не всегда, и прежде всего не так было в каменноугольном периоде. Вот все и запутывается. Несмотря на парниковый эффект, углекислый газ может не нагревать, а охлаждать огромные области Земли.
Холод в глубинах океана, в свою очередь, порождает другое планетарное явление, накопление во многих морях и океанах, на континентальных склонах подушек метангидратов, метанового льда. А метановый лед, он - как мина замедленного действия. Как правило, его основные залежи - там же, где развит подводный вулканизм, обычный и (или) грязевой. Мы говорили об этом в главах о грязевых вулканах и парниковой катастрофе в эоцене. Бурное таяние донных залежей метанового льда в эоцене (похоже, и в пермотриасе и еще в целом ряде случаев) приводило к метановому вскипанию огромных пространств океана. Метан немедленно окислялся с образованием миллионов тонн углекислого газа. И тут углекислый газ из главного охладителя планеты становился ее нагревателем. Парниковый перегрев от полюса до полюса и вплоть до глубоководных впадин устанавливал иной тип океанической циркуляции.