Литмир - Электронная Библиотека
A
A

По крайней мере, применительно к математике, физике, биологии, медицине и, конечно, химии это совершенно очевидно.

Достаточно внимательно посмотреть список лауреатов премии Ленинского комсомола, чтобы убедиться в правоте моих слов, За какую бы глубокую проблему ни брались молодые исследователи, какое бы научное направление ни штурмовали, их результат тем серьезней и значительней, чем солидней, фундаментальней за их плечами высится Школа.

Я уже не раз упоминал на страницах этой книги о ГИПХе - Государственном институте прикладной химии. Находится он в Ленинграде и входит в число первых научно-исследовательских институтов, созданных вскоре после Великой Октябрьской социалистической революции.

Сегодня ГИПХ - всемирно известное научное учреждение, прославившее советскую науку крупными достижениями и научной Школой, стиль, "почерк" которой не спутаешь с другими, ибо создавали институт крупные русские ученые - академик Н. С. Курнаков и профессор Л. А. Чугаев. Ученики и последователи бережно сохраняют традиции своих выдающихся учителей.

Традиции же эти гласят: взялся за проблему - не отступай от нее, будь последователен; а дабы не "изобретать велосипед", изучи предварительно все, что сделано по этой или близкой проблеме в стране и в мире.

Так, собственно, и произошло, когда к разработке технологии изотопа фосфор-33 и производству "меченых"

соединений на его основе приступили молодые исследователи ГИПХа. Эта работа была в дальнейшем отмечена премией Ленинского комсомола.

Проблема, за решение которой взялись молодые гипховцы, лежала на стыке наук, как, впрочем, и многие другие проблемы, над которыми трудятся ученые в настоящее время. О сути стоящей перед исследователями задачи можно рассказать вот что.

С тех пор, как человечеству стала известна одна из сокровеннейших тайн природы - генетический характер наследственности, а спустя четыре десятилетия и материальная основа гена-ДНК (дезоксирибонуклеиновые кислоты), ученые всех стран пытаются расшифровать последовательности нуклеотпдов, из которых они состоят.

Дело это чрезвычайно трудное. И только с помощью химического "ключа" оказалось возможным открыть дверь "за семью печатями". А если точнее, с помощью химии радиоизотопов, потому что рассекретить тайнопись нуклидов можно, только синтезировав соединение идентичное, но меченное радиоактивным изотопом (изотопы - это атомы одного и того же химического элемента, отличающиеся массой ядра. Ядра изотопов при разном числе нейтронов содержат одинаковое количество протонов. Изотопы одного элемента занимают общее место в периодической системе Д. И. Менделеева).

Радиоактивные изотопы, проникая в клетку, обнаруживают себя благодаря излучению. Но они же способны и разрушать молекулу, в которую введены, если излучение окажется жестким.

Первые радиоактивные изотопы азота, кремния, фосфора были получены искусственным путем выдающимися французскими физиками И. и Ф. Жолио-Кюри. Это были первые изотопы, созданные человеком, а не природой!

Стабильные изотопы, то е?ть не обладающие свойством радиоактивного излучения, образовались когда-то в результате ядерных реакций, протекающих в природе. Радиоактивные изотопы также есть в природе, но большинство их рождается в атомном вихре, в ядерном реакторе или на ускорителе, где облучается какой-нибудь тяжелый элемент, например, уран. Облучение сопровождается делением ядер.

Активность излучения, сопровождающего деление атомных ядер, определяется с помощью специальной меры - кюри, получившей свое название в честь знаменитого французского физика. Кюри - это активность излучения грамма радия в одну секунду.

Прежде, чем получить обогащенное радиоактивным изотопом нужное соединение, химик вынужден решить несколько задач. В первую очередь он должен хорошо очистить соединение, которое предстоит исследовать.

А очистив, "метит" его изотопом.

Метод изотопных индикаторов называют еще методом меченых атомов. При этом исследователь всегда отдает предпочтение изотопу с мягким бета-излучением, имеющим длительный период полураспада, поскольку только такой изотоп дает возможность регистрировать меченые атомы на протяжении длительного времени. Более того, по интенсивности излучения несложно определить и суммарное количество элемента, а не только расположение меченых атомов в изучаемой молекуле.

Без дшченых атомов сегодня невозможно ни одно серьезное исследование биологических процессов на молекулярном уровне, и нужда в них химии, медицины, биологии, селекции чрезвычайная. До недавнего времени один из главных поставщиков "меченых" соединений для нужд страны - ГППХ располагал, к сожалению, крайне неравномерной номенклатурой. Институт производил, например, около трехсот наименований соединений с радиоактивным углеродом, вдвое меньше с тритием (радиоактивным изотопом водорода), а с радиоактивным фосфором всего семь. Для такой "скудности" было, разумеется, очень серьезное основание: работать с изоюпом фосфор-32Р, а именно с ним имели дело исследователи, чрезвычайно трудно. Во-первых, жесткое излучение изотопа требует в лаборатории специальных мер защиты. Во-вторых, период его полураспада невелик - чуть больше 14 дней. Бывает, например, что эксперимент еще не завершится, а "меченое" соединение уже перестает о себе заявлять излучением. К тому же фосфор-32Р еще и "капризен", так как склонен в отличие от своих изотопных собратьев образовывать аэрозоли. А эта взвесь соединений радиоактивного фосфора в лаборатории - и вред здоровью ученых, и помеха в работе.

В общем, изотоп фосфор-32Р труден в работе, к тому же и дорог. Поэтому многие ученые-радиохимики во всем мире предпринимали неоднократные попытки получить другой радиоактивный изотоп - фосфор-ЗЗР. Но все они оказывались безрезультатными. И это несмотря на то, что способ получения и основные свойства изотопа - ЗЗР было предсказать нетрудно на основании знания общих законов радиоактивного распада.

Ученые не жалели сил и времени, чтобы получить этот изотоп. Подумать только, продолжительность полураспада его обещала быть 25 суток (многие эксперименты можно было бы завершить за такой срок), и в то же время уровень излучения в 7 раз ниже, чем у фосфор-32Р. К тому же соединения, меченные изотопом фосфор-ЗЗР, могли быть получены в высочайшей степени радиохимической чистоты.

Молодые ученые ГИПХа, как я уже говорил, решили эту проблему.

Но почему все-таки зарубежные ученые, располагающие самым уникальным оборудованием, потерпели неудачу?

С поиска ответа на этот вопрос, как предписывает гипховская Школа (учтя ошибки предшественников), и начали они свою работу. И очень скоро пришли к выводу, что ученые и не могли получить фосфор-ЗЗР, поскольку не располагали для этого близким по массе элементом - серой-338, которую прежде не удавалось получить.

Потребовалось ответить и еще на один вопрос: а если бы предшественники все-таки располагали серой-335, они смогли бы получить радиоактивный фосфор-ЗЗР или нет?

Ответ оказался в то время также отрицательным, потому что превращение одного вещества в другое могло бы произойти только под воздействием сверхмощных потоков нейтронов, а источником такого излучения предшественники не обладали.

Химики ГИПХа обратились за помощью к коллегамфизикам. К тому времени в СССР впервые в мире уже была получена элементарная cepa-33S, и главная заслуга в этом принадлежала ученым Института атомной энергии имени П. В. Курчатова. К ним-то и обратились ленинградские химики с просьбой создать сырьевую базу для получения изотопа фосфор-ЗЗР. И изотоп cepa-33S, выделенный из изотопного моря естественной серы, в Институте атомной энергии был передан ГИПХу.

Но драгоценную cepy-33S еще предстояло "обстрелять" в реакторе нейтронным "градом" и отделить от нее фосфор-ЗЗР, образовавшийся на стенках кварцевой ампулы под воздействием облучения. А для этого пришлось создать специальную аппаратуру, позволившую осуществить такое разделение старым, добрым химическим методом - отгонкой. И в конце концов изотоп фосфор-ЗЗР был получен, и стал тем самым "ключом", что, "войдя" в молекулу, двадцать пять дней непрерывно посылает исследователям сообщения о своем положении и всех превращениях, происходящих в интимнейшем из миров - генетическом аппарате.

41
{"b":"84910","o":1}