Литмир - Электронная Библиотека
A
A

                       // установлен)

// ...

}

Оператор

&
по-прежнему можно использовать для наложения маски.

unsigned char y = x &(out_of_color | out_of_black); // y = 24

Теперь переменная

y
содержит копию битов из позиций 4 и 4 числа
x
(
out_of_color
и
out_of_black
).

Очень часть переменные типа

enum
используются как набор битов. При этом необходимо выполнить обратное преобразование, чтобы результат имел вид перечисления. Рассмотрим пример.

// необходимо приведение

Flags z = Printer_flags(out_of_color | out_of_black);

Приведение необходимо потому, что компилятор не может знать, что результат выражения

out_of_color | out_of_black
является корректным значением переменной типа
Flags
. Скептицизм компилятора обоснован: помимо всего прочего, ни один из элементов перечисления не имеет значения, равного 24 (
out_of_color | out_of_black
), но в данном случае мы знаем, что выполненное присваивание имеет смысл (а компилятор — нет).

25.5.5. Битовые поля

 

Программирование. Принципы и практика использования C++ Исправленное издание - _002.png
 Как указывалось ранее, биты часто встречаются при программировании интерфейсов аппаратного обеспечения. Как правило, такие интерфейсы определяются как смесь битов и чисел, имеющих разные размеры. Эти биты и числа обычно имеют имена и стоят на заданных позициях в слове, которое часто называют регистром устройства (device register). В языке C++ есть специальные конструкции для работы с такими фиксированными схемами: битовые поля (bitfields). Рассмотрим номер страницы, используемый менеджером страниц глубоко внутри операционной системы. Вот как выглядит диаграмма, приведенная в руководстве по работе с операционной системой.

Программирование. Принципы и практика использования C++ Исправленное издание - _326.png

З2-битовое слово состоит из двух числовых полей (одно длиной 22 бита и другое — 3 бита) и четырех флагов (длиной один бит каждый). Размеры и позиции этих фрагментов фиксированы. Внутри слова существует даже неиспользуемое (и неименованное) поле. Эту схему можно описать с помощью следующей структуры:

struct PPN { // Номер физической страницы

  // R6000 Number

  unsigned int PFN:22; // Номер страничного блока

  int:3;               // не используется

  unsigned int CCA:3;  // Алгоритм поддержки

                       // когерентности кэша

                       // (Cache Coherency Algorithm)

  bool nonreachable:1;

  bool dirty:1;

  bool valid:1;

  bool global:1;

};

Для того чтобы узнать, что переменные PFN и CCA должны интерпретироваться как целые числа без знака, необходимо прочитать справочник. Но мы могли бы восстановить структуру непосредственно по диаграмме. Битовые поля заполняют слово слева направо. Количество битов указывается как целое число после двоеточия. Указать абсолютную позицию (например, бит 8) нельзя. Если битовые поля занимают больше памяти, чем слово, то поля, которые не помещаются в первое слово, записываются в следующее. Надеемся, что это не противоречит вашим желаниям. После определения битовое поле используется точно так же, как все остальные переменные.

void part_of_VM_system(PPN * p)

{

  // ...

  if (p–>dirty) { // содержание изменилось

                  // копируем на диск

    p–>dirty = 0;

  }

  // ...

}

Битовые поля позволяют не использовать сдвиги и наложение масок, для того чтобы получить информацию, размещенную в середине слова. Например, если объект класса

PPN
называется
pn
, то битовое поле
CCA
можно извлечь следующим образом:

unsigned int x = pn.CCA; // извлекаем битовое поле CCA

Если бы для представления тех же самых битов мы использовали целое число типа

int
с именем
pni
, то нам пришлось бы написать такой код:

unsigned int y = (pni>>4)&0x7; // извлекаем битовое поле CCA

Иначе говоря, этот код сдвигает структуру

pn
вправо, так чтобы поле
CCA
стало крайним левым битом, а затем накладывает на оставшиеся биты маску
0x7
(т.е. устанавливает последние три бита). Если вы посмотрите на машинный код, то скорее всего обнаружите, что сгенерированный код идентичен двум строкам, приведенным выше.

Смесь аббревиатур (

CCA
,
PPN
,
PFN
) типична для низкоуровневых кодов и мало информативна вне своего контекста.

25.5.6. Пример: простое шифрование

В качестве примера манипулирования данными на уровне битов и байтов рассмотрим простой алгоритм шифрования: Tiny Encryption Algorithm (TEA). Он был изобретен Дэвидом Уилером (David Wheeler) в Кембриджском университете (см. раздел 22.2.1). Он небольшой, но обеспечивает превосходную защиту от несанкционированной расшифровки.

Не следует слишком глубоко вникать в этот код (если вы не слишком любознательны или не хотите заработать головную боль). Мы приводим его просто для того, чтобы вы почувствовали вкус реального приложения и ощутили полезность манипулирования битами. Если хотите изучать вопросы шифрования, найдите другой учебник. Более подробную информацию об этом алгоритме и варианты его реализации на других языках программирования можно найти на веб-странице http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm или на сайте, посвященному алгоритму TEA и созданному профессором Саймоном Шепердом (Simon Shepherd) из Университета Брэдфорда (Bradford University), Англия. Этот код не является самоочевидным (без комментариев!).

361
{"b":"847443","o":1}