}
catch (exception& e) {
cerr << e.what() << endl; // выводим сообщение об ошибке
clean_up_mess();
}
}
Мы просто поместили цикл
while
в блоке
try
, который выводит сообщения об ошибке и устраняет неисправности. После этого работу можно продолжать по-прежнему. Что означает выражение “устранить неисправность”? В принципе готовность к выполнению вычислений после исправления ошибки означает, что все данные находятся в полном порядке и вполне предсказуемы. В калькуляторе единственные данные за пределами отдельных функций находятся в потоке
Token_stream
. Следовательно, мы должны убедиться, что в потоке нет лексем, связанных с прекращенными вычислениями и способных помешать будущим вычислениям.
Рассмотрим пример.
1++2*3; 4+5;
Эти выражения вызывают ошибку, и лексемы
2*3; 4+5
останутся в буферах потоков
Token_stream
и
cin
после того, как второй символ
+
породит исключение.
У нас есть две возможности.
1. Удалить все лексемы из потока
Token_stream
.
2. Удалить из потока все лексемы
Token_stream
, связанные с текущими вычислениями.
В первом случае отбрасываем все лексемы (включая
4+5;
), а во втором — отбрасываем только лексему
2*3
, оставляя лексему
4+5
для последующего вычисления. Один выбор является разумным, а второй может удивить пользователя. Обе альтернативы одинаково просто реализуются. Мы предпочли второй вариант, поскольку его проще протестировать. Он выглядит проще. Чтение лексем выполняется функцией
get()
, поэтому можно написать функцию
clean_up_mess()
, имеющую примерно такой вид:
void clean_up_mess() // наивно
{
while (true) { // пропускаем,
// пока не обнаружим инструкцию "печать"
Token t = ts.get();
if (t.kind == print) return;
}
}
К сожалению, эта функция не всегда работает хорошо. Почему? Рассмотрим следующий вариант:
1@z; 1+3;
Символ
@
приводит нас к разделу
catch
в цикле
while
. Тогда для выявления следующей точки с запятой вызываем функцию
clean_up_mess()
. Функция
clean_up_mess()
вызывает функцию
get()
и считывает символ
z
. Это порождает следующую ошибку (поскольку символ
z
не является лексемой), и мы снова оказываемся в блоке
catch
внутри функции
main()
и выходим из программы. Ой! У нас теперь нет шансов вычислить лексему
1+3
. Вернитесь к меловой доске!
Можно было бы уточнить содержание блоков
try
и
catch
, но это внесет в программу еще большую путаницу. Ошибки в принципе трудно обрабатывать, а ошибки, возникающие при обработке других ошибок, обрабатывать еще труднее. Поэтому стоит попытаться найти способ удалять из потока
Token_stream
символы, которые могут породить исключение. Единственный путь для ввода данных в калькулятор пролегает через функцию
get()
, и он может, как мы только что выяснили, порождать исключения. Таким образом, необходима новая операция. Очевидно, что ее целесообразно поместить в класс
Token_stream
.
class Token_stream {
public:
Token_stream(); // создает поток Token_stream, считывающий
// данные из потока cin
Token get(); // считывает лексему
void putback(Token t); // возвращает лексему
void ignore(char c); // отбрасывает символы,
// предшествующие символу с включительно
private:
bool full; // есть лексема в буфере?
Token buffer; // здесь хранится лексема, которая возвращается
// назад с помощью функции putback()
};
Функция
ignore()
должна быть членом класса
Token_stream
, так как она должна иметь доступ к его буферу. Мы выбрали в качестве искомого символа аргумент функции
ignore()
. Помимо всего прочего, объект класса
Token_stream
не обязан знать, что калькулятор считает хорошим символом для исправления ошибок. Мы решили, что этот аргумент должен быть символом, потому что не хотим рисковать, работая с составными лексемами (мы уже видели, что при этом происходит). Итак, мы получаем следующую функцию:
void Token_stream::ignore(char c)
// символ c обозначает разновидность лексем
{
// сначала проверяем буфер:
if (full && c==buffer.kind) {
full = false;
return;
}
full = false;
// теперь проверяем входные данные:
char ch = 0;
while (cin>>ch)
if (ch==c) return;