Радиоактивные превращения происходят независимо от воли человека. Все попытки искусственно повлиять на протекание природных радиоактивных процессов оказались неудачными. Когда была разработана ядерная модель строения атома, стало ясно, что радиоактивность является ядерным свойством. Способность к радиоактивному распаду определяется особенностями и закономерностями строения ядер.
Величина Z является важнейшей, определяющей характеристикой химического элемента. При испускании ядром α- или β-частиц его заряд изменяется, и тем самым изменяется природа химического элемента. Один элемент превращается в другой. Если же в нашем распоряжении имеется стабильный химический элемент, то величина его Z сама по себе никак не может измениться. Она изменится, если удастся каким-либо способом перестроить структуру его ядра, увеличить или уменьшить число протонов, содержащихся в ядре. Только тогда изменится величина его заряда, а тем самым произойдет искусственная трансмутация химического элемента.
Впервые реакцию искусственного превращения элементов осуществил в 1919 г. Э. Резерфорд.
Э. Резерфорд
Он бомбардировал азот α-частицами, в результате чего образовывались атомы кислорода. Эта первая в истории науки искусственная ядерная реакция может быть записана следующим уравнением:
или короче:
Долгое время α-частица оставалась единственным ядерным снарядом. Энергия природных α-частиц невелика, поэтому они могли проникать в ядра сравнительно небольшого числа элементов, и события эти были чрезвычайно редкими. Поэтому и были ограничены возможности искусственной трансмутации элементов. Дело существенно изменилось благодаря двум открытиям в 30-х годах нашего столетия. В 1932 г. английский ученый Дж. Чэдвик открыл нейтрон, элементарную частицу, не несущую заряда. В силу своей электронейтральности нейтрон оказался универсальным снарядом для осуществления ядерных превращений: ведь он не отталкивался положительно заряженным ядром. Спустя два года Ирен и Фредерик Жолио-Кюри во Франции обнаружили явление искусственной радиоактивности и зафиксировали новый вид радиоактивных превращений — позитронный распад, т. е. испускание позитрона. Стало ясно, что для многих стабильных элементов искусственным путем, с помощью ядерных реакций, могут быть получены радиоактивные изотопы.
Что же позволило ученым осуществить массовое получение искусственных радиоактивных изотопов? То, что физики-экспериментаторы создали точнейшую измерительную аппаратуру, разработали разнообразные методы проведения и изучения ядерных реакций и совместно с химиками научились выделять ничтожные следы полученных радиоактивных веществ. То, что арсенал бомбардирующих частиц значительно обогатился. К α-частицам, протонам и нейтронам добавились дейтроны — ядра тяжелого изотопа водорода, а уже потом многозарядные ионы таких элементов, как бор, углерод, азот, кислород, неон и т. д. Наконец, то, что ученые создали мощные ускорители ядерных снарядов, позволяющие разгонять заряженные частицы до очень высоких скоростей. Все это поставило на повестку дня искусственный синтез новых элементов.
ГЛАВА XII.
ОТКРЫТИЕ СИНТЕЗИРОВАННЫХ ЭЛЕМЕНТОВ В СТАРЫХ ГРАНИЦАХ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
Эту главу можно было бы назвать и так: «Синтез недостающих элементов периодической системы». После того как был открыт последний из стабильных элементов — рений, в таблице между водородом и ураном недоставало лишь четырех элементов с порядковыми номерами 43, 61, 85, 87. Все они были синтезированы до второй мировой войны (либо делались целенаправленные попытки их синтеза). Во всяком случае, именно они открывают историю синтезированных элементов.
ТЕХНЕЦИЙ
Верхняя часть периодической системы вплоть до шестого периода (где размещается семейство редкоземельных элементов) всегда представлялась относительно благополучной, особенно после того, как была открыта группа благородных газов, столь гармонично замкнувшая систему элементов с ее правого края. Благополучной в том смысле, что здесь едва ли можно было ожидать каких-либо сенсационных открытий. Споры возникали лишь по поводу возможного существования элементов легче водорода и между водородом и гелием. В целом же, говоря языком математиков, эта часть периодической системы представляла собой упорядоченное множество химических элементов.
И тем досаднее и непонятнее казался трудно объяснимый пробел, расположенный в пятом периоде и седьмой группе, в клетке таблицы с порядковым номером 43.
Д. И. Менделеев называл этот элемент экамарганец и пытался предсказать его важнейшие свойства. Время от времени казалось, что пробел заполнен, но вскоре обнаруживалась ошибка. Так было в случае ильмения, якобы открытого русским химиком Р. Германном еще в 1846 г. Одно время даже Д. И. Менделеев склонен был считать ильмений экамарганцем. Некоторые исследователи думали, что в промежутке между молибденом и рутением следует поставить дэвий (см. с. 144). Немецкий химик А. Ранг даже помещал символ Dv в соответствующее место таблицы. В 1896 г. мелькнул на горизонте люций, будто бы найденный П. Баррьером, и сгорел, подобно метеору.
Д. И. Менделеев так и не дожил до того счастливого момента, когда экамарганец должен был обрести, наконец, свое настоящее имя. Через год после его смерти, в 1908 г., пришла весть из Японии. М. Огава сообщил ученому миру, что в редком минерале молибдените ему удалось обнаружить долгожданный элемент. Ученый дал ему звучное имя «ниппоний» (в честь древнего названия Японии). Увы, и на сей раз Азия не смогла подарить периодической системе нового представителя. М. Огава, по всей вероятности, имел дело с гафнием (также открытым позже).
И химики, привыкшие к тому, что научные журналы каждый год сообщают об открытии нескольких химических элементов, оказались в растерянности. Химики все больше и больше начинают задумываться, не допустил ли Д. И. Менделеев ошибки в своей системе. Вдруг аналогов марганца вообще не существует.
В 1913 г. Г. Мозли решительно опроверг подобный скепсис. Он четко доказал, что для них есть места в ряду элементов.
В статье, датированной 5 сентября 1925 г., В. Ноддак, И. Такке и О. Берг объявили, что вместе с элементом № 75 — рением ими открыт также и его более легкий аналог по седьмой группе периодической системы — мазурий с порядковым номером 43. Два новых символа Ма и Re появились в таблице Д. И. Менделеева, появились на страницах учебников, замелькали в многочисленных научных журналах. Авторы открытия не видели ничего удивительного в том, что мазурий и рений не удалось обнаружить раньше. По мнению ученых, эти элементы отнюдь не были самыми редкими в земной коре. Дело заключалось в другом. Геохимики выделяют обширную группу рассеянных элементов. Это те, которые почти или совсем не образуют своих собственных минералов, а рассеяны в разных количествах по чужим, словно природа разбрызгала их по горным породам из гигантского пульверизатора. Именно благодаря своей рассеянности мазурий и рений так долго скрывались. И только всевидящий глаз рентгеноспектрального анализа как будто бы разглядел присутствие новых элементов на обширном фоне посторонних веществ. Существует древняя пословица: «Если двое делают одно и то же, это не значит, что получится одно и то же». Если двое начинают свой путь одновременно, то судьбы их обычно складываются по-разному. Из одной точки потянулись две биографии — сорок третьего и семьдесят пятого элементов, но одна из них переросла в широкий торный проселок, а другая затерялась в буреломе недоразумений, противоречий и загадок. Это была тропа мазурия.