Литмир - Электронная Библиотека
A
A

А теперь перейдем к pons asinorum. Доказательство в два столбца может выглядеть так:

[63]

Форма реальности - i_009.jpg

Да, мы посреди доказательства, но у нас новая точка и новый отрезок AD, так что лучше обновить чертеж! Кстати, вспомните, что, по нашему предположению, треугольник равнобедренный, поэтому длина AB и AC одинакова; сейчас мы это используем.

Форма реальности - i_010.jpg
Форма реальности - i_011.jpg

QED[64].

Это доказательство посерьезнее, чем то, что мы видели, поскольку тут вам действительно приходится что-то делать: вы проводите новую линию L и придумываете название D для точки, где L пересекает BC. Это позволяет вам воспринять точки B и C как углы двух новых треугольников ABD и ABC, которые, как мы продемонстрируем далее, равны.

Однако существует и более хитрый способ, изложенный примерно через шестьсот лет после Евклида Паппом Александрийским, еще одним геометром из Северной Африки, в трактате Συναγωγή («Математическое собрание»). (Слово «синагога» означает «собрание», и в античном мире оно могло обозначать собрание математических предложений, а вовсе не собрание евреев на молитву.)

Форма реальности - i_012.jpg

Погодите, что произошло? Казалось бы, мы ничего не делали, а нужное заключение появилось просто из ниоткуда, как кролик, выпрыгивающий при отсутствии шляпы. Это создает определенное беспокойство. Это не то, что понравилось бы Евклиду. Но так или иначе, на мой взгляд, это верное доказательство.

Ключ к идее Паппа – предпоследняя строка: треугольники BAC и CAB конгруэнтны. Кажется, что это просто утверждение о равенстве треугольника самому себе, которое выглядит тривиальным. Но присмотритесь более внимательно.

Что на самом деле мы имеем в виду, говоря, что два разных треугольника PQR и DEF конгруэнтны?

Форма реальности - i_013.jpg

А вот что! Мы утверждаем сразу шесть вещей: длина PQ равна длине DE, длина PR равна длине DF, длина QR равна длине EF, угол P равен углу D, угол Q равен углу E, угол R равен углу F.

Конгруэнтен ли треугольник PQR треугольнику DFE? Нет, потому что на рисунке длина стороны PQ не равна длине соответствующей стороны DF.

Если мы серьезно воспринимаем определение конгруэнтности (а для нас, геометров, принимать определения всерьез – в некотором роде фирменная фишка), то треугольники DEF и DFE не конгруэнтны, несмотря на то что это один и тот же треугольник. Потому что DE и DF имеют разную длину.

Однако в нашем доказательстве с мостом ослов треугольник равнобедренный, а потому, когда мы воспринимаем его как треугольник BAC, он в точности тот же, что и в случае, когда мы его рассматриваем как треугольник CAB. Это не тривиальное утверждение. Если я говорю, что имя АННА читается одинаково в обоих направлениях, я в действительности сообщаю вам тот факт, что это палиндром. Возражать против самой концепции палиндрома, заявляя: «Ну конечно, это одно и то же, там две буквы А и две буквы Н, а порядок не важен», – чистое извращение.

На деле слово «палиндромный» было бы хорошим названием для треугольников типа BAC, который конгруэнтен треугольнику CAB, получаемому при записи вершин в обратном порядке. Именно благодаря такой идее Папп и сумел пройти через мост, не прибегая к дополнительным линиям и точкам.

И все же доказательство Паппа не вполне объясняет, почему равнобедренный треугольник имеет два равных угла. Представление о палиндромности равностороннего треугольника, то есть о том, что он остается таким же при записи вершин в обратном порядке, говорит вам то же, что (я уверен) и ваша интуиция: треугольник остается неизменным, когда вы берете его, переворачиваете и кладете обратно на то же место. Как и слово-палиндром, он обладает симметрией. Вот почему нам кажется, что углы должны быть равны.

На уроках геометрии нам обычно не разрешают говорить о переворачивании фигур[65], хотя делать это нужно. С какими бы абстракциями мы ни имели дело, математика – это то, чем мы занимаемся с помощью нашего тела. И прежде всего – геометрия. Иногда буквально: каждый математик обнаруживал, что рисует невидимые фигуры с помощью жестов, и как минимум одно исследование[66] показало, что дети, которым предлагали представить геометрическую задачу в движениях, чаще приходили к верному заключению[67]. Говорят, сам Пуанкаре в геометрических рассуждениях полагался на свое чувство движения. Он не был визуалом и плохо запоминал лица и фигуры, поэтому, когда ему требовалось[68] нарисовать картинку по памяти, он, по его словам, вспоминал не то, как она выглядела, а то, как по ней двигался его взгляд.

РАВНОБЕДРЕННОСТЬ

Что означает слово «равнобедренный» в названии треугольников? Прежде всего то, что две его стороны равны. В греческом языке используется слово σκέλη (скеле), что значит «ноги», отсюда и английское isosceles. В китайском слово

Форма реальности - i_014.jpg
составлено из иероглифов равный и талия, на русском языке у такого треугольника равные бедра, а на иврите – равные голени. В любом случае мы, похоже, согласны с тем, что быть равнобедренным означает иметь две равные стороны. Но почему? Почему бы не определить равнобедренный треугольник как треугольник, у которого равны два угла? Вы, вероятно, заметили (а весь смысл pons asinorum в том, чтобы это доказать!), что равенство двух сторон означает равенство двух углов, и наоборот. Другими словами, эти два определения эквивалентны и задают одно и то же множество треугольников. Но я бы не сказал, что это одно и то же определение. Существуют и другие варианты. Более современно было бы определить равнобедренный треугольник как палиндромный: треугольник, который вы можете взять, перевернуть, положить обратно, и он при этом не изменится. То, что у такого треугольника будут две равные стороны и два равных угла, следует почти автоматически. В этом геометрическом мире рассуждение Паппа показывало бы, что треугольник с двумя равными сторонами равнобедренный, а треугольники BAC и CAB совпадают.

Хорошее определение – то, которое проливает свет на ситуации, выходящие за рамки того, для чего оно было придумано. Идея, что равнобедренный означает не изменяющийся при переворачивании, дает нам хорошее представление о том, что такое равнобедренная трапеция или равнобедренный пятиугольник. Вы могли бы сказать, что равнобедренный пятиугольник – тот, у которого две стороны равны, но тогда вы соглашаетесь на перекошенные обвисшие пятиугольники наподобие этого:

Форма реальности - i_015.jpg

Но хотите ли вы этого? К определению «равнобедренный» явно лучше подходит вот такой симпатичный пятиугольник:

Форма реальности - i_016.jpg

И в самом деле, в школьном учебнике равнобедренная трапеция – это не фигура с двумя равными сторонами или двумя равными углами, а фигура, которую можно перевернуть, и она не изменится. Сюда прокралось постевклидово понятие симметрии, потому что наши мозги устроены так, что его замечают. Все чаще и чаще идея симметрии становится основанием для доказательств на уроках геометрии. Это не Евклид, но именно такова сейчас геометрия.

вернуться

63

* Зря: если совсем строго, надо еще доказать, что прямая L пересекает отрезок ВС. Прим. науч. ред.

вернуться

64

Сокращение латинских слов Quod Erat Demonstrandum, означающих «что и требовалось доказать».

вернуться

65

В Соединенных Штатах стандарты образования Common Core, которые должны были обеспечить универсальную базу для обучения детей по двенадцатилетней системе K-12, сейчас явно сдают позиции. В них действительно требуется, чтобы на уроках геометрии рассматривали симметрию. Остается надеяться, что, когда стандарты Common Core отступят, обсуждение симметрии останется в программах, подобно ледниковой морене.

вернуться

66

Существует как минимум одно исследование: M. J. Nathan, et al., “Actions Speak Louder with Words: The Roles of Action and Pedagogical Language for Grounding Mathematical Proof,” Learning and Instruction 33 (2014): 182–93.

вернуться

67

Хотя частота построения формального доказательства сделанного вывода при этом не увеличивалась!

вернуться

68

Когда ему требовалось: Jeremy Gray, Henri Poincaré: A Scientific Biography (Princeton: Princeton University Press, 2012), 26.

8
{"b":"842310","o":1}