Литмир - Электронная Библиотека
A
A

Первичной основой современной математики служит теория множеств. Понятие множества, строго говоря, не определяется. Приближенно множеством можно считать любое собрание объектов, мыслимое как единое целое.

Категории – это совокупность однотипных математических объектов и морфизмов между этими объектами. Теория категорий играет в математике роль параллельную и дополнительную к роли теории множеств.

Топология – раздел математики, имеющий своим предназначением выяснение и исследование идеи непрерывности. В настоящее время понятие непрерывного отображения предполагает только, что точки и множества рассматриваемой фигуры могут находиться в некотором интуитивно ясном отношении близости, отличном от отношения принадлежности. Такие фигуры называются топологическими пространствами.

Алгебраические системы – это множество с определенными на нем операциями и отношениями. Алгебраическая система называется алгеброй (общей, универсальной, абстрактной), если множество отношений пусто, и – моделью, если пусто множество операций.

Математическая логика – раздел математики посвященный изучению доказательств оснований математики. На основе математической логики были построены различные системы аксиоматической теории множеств. Наиболее известная из них – система Цермело-Френкеля. Прикладное значение математической логики – конструкция ЭВМ.

Наиболее часто мы сталкиваемся с понятиями операции, отношения и отображения.

Понятие операции интуитивно ясно на примере хорошо известных операций сложения и умножения. Это – бинарные операции. Примером унарной операции является отрицание.

Отношения устанавливают связь между множествами.

Отображения – это закон, по которому каждому элементу некоторого заданного множества сопоставляется однозначно определенный элемент другого заданного множества. Фундаментальными понятиями математики являются также понятия ассоциативности, коммутативности и дистрибутивности.

Ассоциативность – это сочетательный закон для операции.

Коммутативность – это переместительный закон для операции.

Дистрибутивность – это распределительный закон для двух операций.

Навести порядок в этом необозримом море различных алгебр помогает свойство гомоморфизма, которым обладают алгебры одного и того же типа. Гомоморфизм – это одно из наиболее важных понятий в математике. Изоморфизмом называется взаимно-однозначный гомоморфизм.

К сожалению, огромное количество новых правил в современной математике отпугивает от нее множество людей, формируя общую неприязнь к математике, что в гуманитарной сфере даже возводится в ранг достоинства. Это происходит видимо потому, что человек изначально воспринимает только ту информацию, которая доступна его пониманию. Именно особое понимание природы на уровне интуиции определяет принадлежность человека к физике, хотя опыт показывает, что зачастую с трудом достигнутое понимание рано или поздно оказывается ложным. В математике ситуация несколько другая, здесь все основные понятия – это правила Игры, к которым надо привыкнуть, а не понять. Более того, математики считают, что все введенные ими понятия – реальны.

В итоге, мы решили «не пугать» читателей сложными формулами и постараться обойтись без них.

2.2. Фрактальная геометрия

В отличие от физики, в математике революции проходят спокойно и даже незаметно. Появление комплексных чисел большинством математиков XVIII века было воспринято, как естественный процесс расширения множества вещественных чисел (ассоциируемое с линией без ширины), до двумерного множества в плоскости комплексных чисел. То же самое можно сказать и о революционных изменениях в базовых понятиях математики второй половины XIX века.

Все началось с открытия К. Вейерштрассом непрерывной, но нигде не дифференцируемой функции [17]. В сущности, эта функция уже была прообразом фрактала, но никто еще об этом не догадывался. Математическая мысль пошла в сторону введения новых понятий – дробной размерности и, соответственно, – дробной производной [18]. «Фрактальная» функция Вейерштрасса, из-за ее «изрезанности» («шероховатости»), воспринималась как линия с шириной.

В начале ХХ века Жюлиа и Фату открыли нелинейное итерационное отображение с комплексными аргументами: zn+1 → Zn2 + c.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

5
{"b":"839257","o":1}