Литмир - Электронная Библиотека

Используя эти уравнения, мы можем проверить правильность заключений относительно общих свойств динамических систем, выведенных в классической динамике. Канонические уравнения обратимы: обращение времени математически эквивалентно обращению скорости. Канонические уравнения консервативны: гамильтониан, выражающий полную энергию системы в канонических переменных (координатах и импульсах), сохраняется при изменениях координат и импульсов во времени.

Мы уже упоминали о том, что существует множество различных представлений одной и той же динамической системы (или множество различных точек зрения на одну и ту же динамическую систему), в каждом из которых уравнения движения сохраняют гамильтонову форму. Эти представления соответствуют различным выборам координат и импульсов. Одна из основных проблем динамики заключается в том, чтобы указать наиболее разумный выбор канонических переменных р и q, при котором описание динамики становится особенно простым. Например, можно было бы попытаться найти канонические переменные, в которых гамильтониан сводится только к кинетической энергии и зависит лишь от импульсов (а не от координат). Замечательно, что в этом случае импульсы становятся интегралами движения, т. е. сохраняются во времени. Действительно, как мы уже говорили, изменение импульсов во времени в силу канонических уравнений зависит от производной гамильтониана по координатам. Если эта производная обращается в нуль, то импульсы становятся интегралами движения. С аналогичной ситуацией мы сталкиваемся при рассмотрении системы «свободная частица». Для того чтобы перейти к этой системе, необходимо с помощью подходящего преобразования «исключить» взаимодействие. Условимся называть динамические системы, для которых такой переход возможен, интегрируемыми системами. Таким образом, любую интегрируемую систему можно представить в виде совокупности подсистем. Каждая из таких подсистем изменяется в полной изоляции от других, независимо от них, совершая в процессе своей эволюции вечное и неизменное движение, которое Аристотель приписывал небесным телам (см. рис. 1).

Порядок из хаоса - img_1

Рис. 1. Два представления одной и той же динамической системы: а) как множество взаимодействующих точек (волнистые линии условно изображают взаимодействие между точками); б) как множество точек, каждая из которых ведет себя независимо от остальных (если потенциальная энергия исключена, то относительные движения точек не зависят от их взаимного расположения).

Мы уже упоминали о том, что в динамике «все задано». В случае гамильтоновой динамики это означает, что с самого первого мгновения значения различных инвариантов движения заданы. Ничего нового не может ни «случиться», ни «произойти». Так в гамильтоновой динамике мы сталкиваемся с одним из тех драматических моментов в истории науки, когда описание природы сводится почти к статической картине. Действительно, при разумной замене переменных мы можем добиться, чтобы все взаимодействия исчезли. Долгое время считалось, что интегрируемые системы, сводимые к свободным частицам, являются прототипами всех динамических систем. Поколения физиков и математиков не покладая рук трудились над тем, чтобы найти для каждого типа динамических систем «правильные» переменные, которые позволили бы исключить взаимодействия. Одним из наиболее изученных примеров может служить задача трех тел, которую с полным основанием можно назвать наиболее важной задачей в истории динамики. Одним из частных случаев задачи трех тел является движение Луны, испытывающей притяжение как со стороны Земли, так и со стороны Солнца. Были предприняты бесчисленные попытки свести эту систему к интегрируемой, но в конце XIX в. Брунс и Пуанкаре доказали, что это невозможно. Их результат был полной неожиданностью для современников и, по существу, возвестил о наступлении бесповоротного конца всех простых экстраполяций динамики на основе интегрируемых систем. Открытие Брунса и Пуанкаре показало, что динамические системы не изоморфны. Простые интегрируемые системы допускают разложение на невзаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно. Хотя в то время значение открытия Брунса и Пуанкаре не было оценено по достоинству, оно означало отказ от незыблемого убеждения в однородности динамического мира, в его сводимости к интегрируемым системам. Природа как эволюционирующая система с многообразно взаимодействующими подсистемами упорно сопротивлялась попыткам сведения ее к универсальной схеме, не содержащей к тому же времени.

Это положение подтверждали и другие факты. Мы уже упоминали о том, что траектории динамической системы соответствуют детерминистическим законам: коль скоро начальное состояние задано, динамические законы движения позволяют вычислить траекторию для любого момента времени в будущем и в прошлом. Однако в некоторых особых точках траектория может становиться внутренне неопределенной. Например, жесткий маятник может совершать движения двух качественно различных типов: либо колебаться, либо вращаться вокруг точки подвеса. Если начальный толчок достаточно силен для того, чтобы привести маятник в вертикальное положение с нулевой скоростью, то направление, в котором он упадет, и, следовательно, характер движения не определенны. Достаточно сообщить маятнику бесконечно малое возмущение, чтобы он начал вращаться или совершать колебания вокруг точки подвеса. (Подробно проблема неустойчивости движения, с которой мы здесь сталкиваемся, будет рассмотрена в гл. 9.)

Интересно, что еще Максвелл придавал особым точкам большое значение. Описывая взрыв ружейного пороха, он замечает:

«Во всех этих случаях имеется одно общее обстоятельство: система обладает некоторым количеством потенциальной энергии, способным трансформироваться в движение, но не трансформирующимся до тех пор, пока система не достигнет определенной конфигурации, для перехода в которую требуется совершить работу, в одних случаях бесконечно малую, но, вообще говоря, не находящуюся в определенной пропорции к энергии, выделяемой вследствие перехода. Примерами могут служить скала, отделившаяся от основания в результате выветривания и балансирующая на выступе горного склона, небольшая искра, поджигающая огромный лес, слово, ввергающее мир в пучину войны, крупица вещества, лишающая человека воли, крохотная спора, заражающая посевы картофеля, геммула[83], превращающая нас в философов или идиотов. У каждого существования выше определенного ранга имеются свои особые точки; чем выше ранг, тем их больше. В этих точках воздействия, физическая величина которых слишком мала для того, чтобы существо конечных размеров принимало их во внимание, могут приводить к необычайно важным последствиям. Всеми великими результатами человеческой деятельности мы обязаны искусному использованию таких особых состояний, когда такая возможность предоставлялась»[84].

Идеи Максвелла не получили дальнейшего развития из-за отсутствия подходящих математических методов для идентификации систем с особыми точками и отсутствия химических и биологических знаний, позволяющих, как мы увидим из дальнейшего, более глубоко проникнуть в понимание той весьма важной роли, которую играют особые точки.

Как бы то ни было, со времен монад Лейбница (см. заключительную часть разд. 4) и поныне (достаточно упомянуть хотя бы стационарные состояния электронов в модели Бора, см. гл. 7) интегрируемые системы служили великолепной моделью динамических систем, и физики пытались распространить их свойства, т. е. свойства весьма специального класса гамильтоновых уравнений, на все процессы, протекающие в природе. Такое стремление вполне понятно. Вплоть до недавнего времени интегрируемые системы были единственным основательно изученным классом динамических систем. Не следует упускать из виду и притягательную силу которой обладает в наших глазах любая замкнутая система, позволяющая ставить все имеющие смысл задачи. Динамика является адекватным языком. Будучи полной, она, по определению, коэкстенсивна тому миру, который она описывает. Предполагается, что все задачи, простые и сложные, напоминают одна другую, поскольку любую из них всегда можно представить в общем виде. Трудно поэтому устоять перед искушением и не прийти к выводу о том, что все задачи имеют много общего с точки зрения их решений и что в результате более или менее сложной процедуры интегрирования не может появиться ничего качественно нового. Ныне, мы знаем, что такое представление о внутренней однородности динамических систем не соответствует действительности. Кроме того, механический мир был приемлем, покуда все наблюдаемые так или иначе были связаны с движением. Теперь мы столкнулись с другой ситуацией. Например, нестабильные частицы обладают энергией, которую можно связать с движением, но они же обладают и временем жизни, а это наблюдаемая совершенно другого типа, более тесно связанная (как будет показано в гл. 4 и 5) с необратимыми процессами. Необходимость введения в теоретические науки новых наблюдаемых была и поныне остается одной из движущих сил, вынуждающих нас выходить за рамки механистического мировоззрения.

29
{"b":"838434","o":1}