Литмир - Электронная Библиотека

Некоторые из современных историков науки пошли еще дальше и утверждают, что ньютоновский синтез Земли и неба был в больший мере достижением химика, чем астронома. Ньютоновское всемирное тяготение «анимировало» материю и в более строгом смысле превращало всю деятельность природы в наследницу тех самых сил, которые химик Ньютон наблюдал и использовал в своей лаборатории, — сил химического «сродства», способствующих или препятствующих образованию каждой новой комбинации материи[73]. Решающая роль, сыгранная орбитами небесных тел, сохраняет свое значение. Однако в самом начале своих занятий астрономией (около 1679 г.) Ньютон, по-видимому, ожидал найти новые силы тяготения только на небесах — силы, подобные химическим силам и, быть может, легче поддающиеся исследованию математическими методами. Шесть лет спустя математические исследования .привели Ньютона к неожиданному выводу: силы, действующие между планетами, и силы, ускоряющие свободно падающие тела, не только подобны, но и тождественны. Тяготение не специфично для каждой планеты в отдельности, оно одно и то же для Луны, обращающейся вокруг Земли, для всех планет и даже для комет, пролетающих через солнечную систему. Ньютон поставил перед собой задачу открыть в небе силы, подобные химическим силам: специфические сродства, различные для различных соединений, наделяющие каждое химическое соединение качественно дифференцированной способностью вступать в реакции. Но в результате своих исследований он обнаружил универсальный закон, применимый, как подчеркивал сам Ньютон, ко всем явлениям природы — химическим, механическим или небесным.

Таким образом, ньютоновский синтез с полным основанием можно считать сюрпризом. Именно в память о столь неожиданном, поразительном открытии научный мир видит в имени Ньютона символ современной науки. Нельзя не удивляться тому, что для раскрытия основного кода природы потребовался единичный творческий акт.

В течение долгого времени эта неожиданная «разговорчивость» природы, этот триумф английского Моисея были источником интеллектуального конфуза для континентальных рационалистов. Свершение Ньютона они считали чисто эмпирическим открытием, которое с таким же успехом могло быть эмпирически опровергнуто. В 1747 г. Эйлер, Клеро и Д'Аламбер, несомненно принадлежавшие к числу величайших ученых своего времени, пришли к одному и тому же заключению: Ньютон совершил ошибку. Для описания движения Луны математическое выражение для величины силы притяжения должно иметь более сложный вид, чем у Ньютона, и состоять из двух слагаемых. На протяжении двух последующих лет они пребывали в убеждении, что природа доказала ошибочность выводов Ньютона, и эта уверенность вдохновила их. Далекие от мысли видеть в открытии Ньютона синоним физической науки, физики не без удовольствия помышляли о том, чтобы предать забвению закон всемирного тяготения и вместе с ним вывод об универсальности гравитации. Д'Аламбер не видел ничего зазорного в том, чтобы во всеуслышание заявить о необходимости поиска новых данных против Ньютона, которые позволили бы нанести тому «le coup de pied de l'ane[74][75]».

Лишь один человек во Франции нашел в себе мужество возвысить голос против столь уничижительного приговора. В 1748 г. Бюффон написал следующие строки:

«Физический закон есть закон лишь в силу того, что его легко измерить и что шкала, которую он собой представляет, не только всегда одна и та же, но и единственная в своем роде... Месье Клеро выдвинул возражение против системы Ньютона, но это в лучшем случае возражение, и оно не должно и не может быть принципом. Необходимо попытаться преодолеть его, а не превращать в теорию, все следствия из которой опираются исключительно на вычисления, ибо, как я уже говорил, с помощью вычислений можно представить что угодно и не достичь ничего. Считая допустимым дополнять физический закон, каковым является закон всемирного тяготения, одним или несколькими членами, мы лишь добавляем произвол вместо того, чтобы описывать реальность»[76].

Позднее Бюффон провозгласил тезис, который, хотя и на короткое время, стал программой исследований для всей химии:

«Законы сродства, следуя которым составные части различных веществ разъединяются для того, чтобы, соединившись вновь в иных сочетаниях, образовать однородные вещества, такие же, как и общий закон, которому подчиняется взаимодействие между всеми небесными телами: все они действуют друг па друга одинаковым образом, в одинаковой зависимости от масс и расстояния — шарик из воды, песка или металла действует на другой шарик так же, как земной шар действует на Луну; и если законы сродства ранее считались отличными от законов тяготения, то лишь потому, что они не были полностью поняты, не были до конца постигнуты, лишь потому, что проблема не рассматривалась в полном объеме. В случае небесных тел конфигурация либо сказывается слабо, либо вообще не сказывается из-за огромных расстояний, но становится необычайно важной, когда расстояния очень малы или обращаются в нуль... Наши внуки смогут с помощью вычислений добиться успеха в этой новой области знания [т. е. вывести закон взаимодействия между элементарными телами из их конфигураций]»[77].

История подтвердила правоту натуралиста, для которого сила была не математическим артефактом, а самой сущностью нового естествознания. Последующее развитие событий вынудило физиков признать свою ошибку. Пятьдесят лет спустя Лаплас уже смог создать свое «Изложение системы мира». Закон всемирного тяготения успешно выдержал все проверки: многочисленные случаи кажущегося нарушения этого закона превратились в блестящие подтверждения его правильности. В то же время французские химики под влиянием Бюффона заново открыли странную аналогию между физическим притяжением и химическим сродством[78]. Несмотря на едкий сарказм Д'Аламбера, Кондильяка и Кондорсе, чей несгибаемый рационализм был совершенно несовместим с темными и бессодержательными «аналогиями», они прошли по пути, проложенному Ньютоном, в обратном направлении — от звезд к веществу.

К началу XIX в. ньютоновская программа (сведение всех физико-химических явлений к действию сил — к гравитационному притяжению добавилась отталкивающая сила тепла, заставляющая тела расширяться при нагревании и способствующая растворению, а также электрическая и магнитная силы) стала официальной программой лапласовской школы, занимавшей доминирующее положение в научном мире в эпоху, когда в Европе господствовал Наполеон[79].

Начало XIX в. стало свидетелем расцвета французских высших ecoles (школ) и реорганизации университетов. Это было время, когда ученые становились преподавателями и профессиональными исследователями и брали на себя задачу воспитания своих преемников[80]. Это было время первых попыток представить синтез знания в удобообозримой форме, для того чтобы изложить его в учебниках и научно-популярных изданиях. Наука перестала быть предметом обсуждения только в великосветских салонах, ее преподавали и популяризировали[81]. Относительно науки было достигнуто профессиональное единство мнений, она была освящена авторитетом университетских кафедр. Ученые сошлись во мнениях прежде всего по поводу ньютоновской системы: во Франции уверенность Бюффона в правильности ньютоновского подхода наконец возобладала над рациональным скептицизмом века Просвещения.

Велеречивость следующих строк, написанных через сто лет после ньютоновского апофеоза в Европе сыном Ампера, эхом вторит эпитафии А. Поупа:

Провозгласив пришествие мессии от науки,

Кеплер разогнал тучи, скрывавшие небосвод.

И Слово стало человеком, Слово прозрения Бога,

Коего почитал Платон, и нарекли человека Ньютоном.

Он пришел и открыл высший закон,

Вечный, универсальный, единственный и неповторимый, как сам Бог,

27
{"b":"838434","o":1}