Резюмируя, можно сказать, что в двух первых частях нашей книги мы рассматриваем два противоборствующих взгляда на физический мир: статический подход классической динамики и эволюционный взгляд, основанный на использовании понятия энтропии. Конфронтация между столь противоположными подходами неизбежна. Ее долго сдерживал традиционный взгляд на необратимость как на иллюзию, приближение. Время в лишенную времени Вселенную ввел человек. Для нас неприемлемо такое решение проблемы необратимости, при котором необратимость низводится до иллюзии или является следствием тех или иных приближений, поскольку, как мы теперь знаем, необратимость может быть источником порядка, когерентности, организации.
Конфронтация вневременного подхода классической механики и эволюционного подхода стала неизбежной. Острому столкновению этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги. В ней мы подробно рассматриваем традиционные попытки решения проблемы необратимости, предпринятые сначала в классической, а затем и квантовой механике. Особую роль при этом сыграли пионерские работы Больцмана и Гиббса. Тем не менее мы можем с полным основанием утверждать, что проблема необратимости во многом осталась нерешенной. По словам Карла Поппера, история была драматической: сначала Больцман считал, что ему удалось дать объективную формулировку нового понятия времени, вытекающего из второго начала термодинамики, но в результате полемики с Цермело и другими противниками был вынужден отступить:
«В свете (или во тьме) истории Больцман по всем принятым стандартам потерпел поражение, хотя все признают, что он был выдающимся физиком. Ему так и не удалось рассеять все сомнения относительно статуса предложенной им H-теоремы или объяснить возрастание энтропии... Оказываемое на него давление было столь велико, что он утратил веру в себя...»[22].
Проблема необратимости и поныне остается предметом оживленных споров. Как такое возможно через сто пятьдесят лет после открытия второго начала термодинамики? У этого вопроса имеется много аспектов, как культурных, так и технических. Неверие в существование времени неизбежно таит в себе культурную компоненту. Мы неоднократно будем цитировать высказывания Эйнштейна. Его окончательное суждение гласит: «Время (как необратимость) — не более чем иллюзия». По существу, Эйнштейн лишь повторил то, о чем еще в XVI в. писал Джордано Бруно и что на протяжении веков было символом веры естествознания:
«Итак, Вселенная едина, бесконечна, неподвижна... Она не движется в пространстве... Она не рождается... Она не уничтожается... Она не может уменьшаться или увеличиваться...»[23]
Долгое время взгляды Бруно господствовали в естественнонаучном мышлении западного мира. Нужно ли удивляться, что после такой предыстории вторжение необратимости, обязанной своим происхождением инженерным наукам и физической химии, было воспринято с недоверием. Но помимо культурных причин, существовали и технические. Любая попытка «вывести» необратимость из динамики неминуемо обречена на провал, поскольку необратимость — явление не универсальное. Мы легко можем представить себе строго (а не приближенно) обратимые ситуации, например маятник без трения или движение планет. Неудачи, постигшие все предпринимавшиеся в прошлом попытки «вывести» необратимость из динамики, привели к разочарованию и создали впечатление, что понятие необратимости по своему происхождению субъективно. Все эти проблемы в дальнейшем мы обсудим более подробно, а пока ограничимся следующим замечанием. Проблему необратимости можно рассматривать сегодня с другой точки зрения, поскольку, как теперь известно, существуют различные классы динамических систем. Мир далеко не однороден. Следовательно, интересующий нас вопрос также может быть поставлен иначе: имеется ли в структуре динамических систем нечто специфическое, позволяющее им «отличать» прошлое от будущего? Какова необходимая для этого минимальная сложность?
Такая постановка вопроса позволила нам продвинуться вперед. Ныне мы можем с большей точностью судить об истоках понятия времени в природе, и это обстоятельство приводит к далеко идущим последствиям. Необратимость вводится в макроскопический мир вторым началом термодинамики — законом неубывания энтропии. Теперь мы понимаем второе начало термодинамики и на микроскопическом уровне. Как будет показано в дальнейшем, второе начало термодинамики выполняет функции правила отбора — ограничения начальных условий, распространяющиеся в последующие моменты времени по законам динамики. Тем самым второе начало вводит в наше описание природы новый, несводимый к чему-либо элемент. Второе начало термодинамики не противоречит динамике, но не может быть выведено из нее.
Уже Больцман понимал, что между вероятностью и необратимостью должна существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно случайным образом. Наш анализ подтверждает эту точку зрения. Действительно, что такое стрела времени в детерминистическом описании природы? В чем ее смысл? Если будущее каким-то образом содержится в настоящем, в котором заключено и прошлое, то что, собственно, означает стрела времени? Стрела времени является проявлением того факта, что будущее не задано, т. е. того, что, по словам французского поэта Поля Валери, «время есть конструкция»[24].
Наш повседневный жизненный опыт показывает, что между временем и пространством существует коренное различие. Мы можем передвигаться из одной точки пространства в другую, но не в силах повернуть время вспять. Мы не можем переставить прошлое и будущее. Как мы увидим в дальнейшем, это ощущение невозможности обратить время приобретает теперь точный научный смысл. Допустимые («разрешенные») состояния отделены от состояний, запрещенных вторым началом термодинамики, бесконечно высоким энтропийным барьером. В физике имеется немало других барьеров. Одним из них является скорость света. По современным представлениям, сигналы не могут распространяться быстрее скорости света. Существование этого барьера весьма важно: не будь его, причинность рассыпалась бы в прах. Аналогичным образом энтропийный барьер является предпосылкой, позволяющей придать точный физический смысл связи. Представьте себе, что бы случилось, если бы наше будущее стало бы прошлым каких-то других людей! К обсуждению этой проблемы мы еще вернемся.
Новейшие достижения физики еще раз подчеркнули реальность времени. Открытия последних лет обнаружили новые аспекты времени. На протяжении всего XX в. проблема времени занимала умы наиболее выдающихся мыслителей современности. Вспомним хотя бы А. Эйнштейна, М. Пруста, 3. Фрейда, Тейяра де Шардена, Ч. Пирса или А. Уайтхеда.
Одним из наиболее удивительных результатов специальной теории относительности Эйнштейна, опубликованной в 1905 г., было введение локального времени, связанного с каждым наблюдателем. Однако эйнштейновское локальное время оставалось обратимым временем. И в специальной, и в общей теории относительности Эйнштейн видел проблему в установлении «связи» между наблюдателями — в указании способа, который позволил бы наблюдателям сравнивать временные интервалы. Теперь мы получаем возможность исследовать проблему времени в других концептуальных контекстах.
В классической механике время было числом, характеризующим положение точки на ее траектории. Но на глобальном уровне время может иметь и другое значение. При виде ребенка мы можем более или менее точно угадать его возраст, хотя возраст не локализован в какой-либо части тела ребенка. Возраст — глобальное суждение. Часто утверждалось, что наука «опространствует время», придает времени пространственный характер. Мы же открываем возможность иного подхода. Рассмотрим какой-нибудь ландшафт и его эволюцию: растут населенные пункты, мосты, и дороги связывают различные районы и преобразуют их. Пространство приобретает временное измерение. По словам географа Б. Берри, мы приходим к «овремениванию пространства».