Независимо от результатов континентального движения, продолжающийся процесс субдукции станет причиной перемещения воды в мантию. Геофизическая модель даёт оценку, что спустя миллиард лет 27% от текущей массы океана будет утрачено. Если этот процесс будет продолжаться в неизменном виде в будущем, то субдукция остановится после того, как 65% текущей массы океана будет поглощено.
Кристофер Скотезе и его коллеги в рамках проекта Paleomap спрогнозировали движение плит на несколько сотен миллионов лет. В их сценарии через 50 миллионов лет Средиземное море может исчезнуть, а столкновение Европы и Африки создаст длинную горную цепь, тянущуюся вплоть до Персидского залива. Австралия сольётся с Индонезией, а Нижняя Калифорния будет скользить на север вдоль побережья. Могут появиться новые зоны субдукции у восточного побережья Северной и Южной Америки, а вдоль их берегов сформируются горные цепи. На юге планеты перемещение Антарктиды к северу станет причиной таяния всего ледникового покрова. Это, наряду с таянием ледникового покрова Гренландии и всех горных ледников, повысит средний уровень мирового океана на 90 метров. Затопление континентов приведёт к изменениям климата.
По мере реализации этого сценария через 100 миллионов лет распространение континентов достигнет своей максимальной точки, и они начнут сливаться. Через 250 миллионов лет Северная Америка столкнётся с Африкой, а Южная Америка будет обёрнута вокруг южной оконечности Африки. Результатом будет формирование нового суперконтинента (иногда называемого Пангея Ультима) и океана, простирающегося на половине планеты. Антарктический континент полностью изменит направления и возвратится к Южному полюсу с образованием нового ледникового покрова Ward & Brownlee, 2003, pp. 92–96.
Первым учёным, экстраполировавшим текущие движения континентов, был канадский геолог Пол Ф. Хоффман из Гарвардского университета. В 1992 году Хоффман предположил, что континенты Северная и Южная Америки продолжат движение через Тихий океан, разворачиваясь у Дальнего Востока до тех пор, пока не начнут сливаться с Азией. Он окрестил образовавшийся суперконтинент Амазией. Позднее, в 1990-х гг., Рой Ливермор рассчитал подобный сценарий. Он предположил, что Антарктида начнёт перемещаться на север, а восток Африки и Мадагаскар будут двигаться через Индийский океан до столкновения с Азией.
В экстраверсной модели смыкание Тихого океана будет закончено через 350 миллионов лет. Это ознаменует завершение текущего суперконтинентального цикла, в котором континенты разделяются, а затем возвращаются друг к другу примерно каждые 400—500 миллионов лет. После создания суперконтинента тектоника плит может вступить в период бездействия, поскольку скорость субдукции падает на порядок. Этот период стабильности может привести к увеличению температуры мантии на 30—100K каждые 100 миллионов лет, что является минимальным временем жизни прошлых суперконтинентов и, как следствие, может возрасти вулканическая активность. В 2012 году группа геологов под руководством Росса Митчелла из Йельского университета предложила новую гипотезу движения континентов. При построении своей модели учёные опирались на данные о дрейфе магнитных полюсов, которые позволяют вычислить направление движения литосферных плит. Согласно исследованию, материки в будущем сольются в единый континент в районе Северного Ледовитого океана и центром нового суперконтинента станет Северная Америка. По мнению Митчелла и его коллег, Азия будет двигаться в сторону Северной Америки, с которой она впоследствии соединится. Также к ним примкнёт современная Гренландия, которая станет частью суперконтинента.
Формирование суперконтинента может существенно повлиять на окружающую среду. Столкновение плит приведёт к формированию гор, тем самым значительно меняя погодные условия. Уровень моря может упасть вследствие увеличения оледенения. Скорость поверхностной эрозии может возрасти, в результате чего увеличится скорость, с которой поглощается органический материал. Формирование суперконтинента может привести к снижению глобальной температуры и увеличению концентрации атмосферного кислорода. Эти изменения могут привести к более быстрой биологической эволюции, поскольку появятся новые ниши. Это, в свою очередь, может повлиять на климат и привести к дальнейшему понижению температуры. Образование суперконтинента изолирует мантию. Поток тепла будет сконцентрирован, приводя к вулканизму и заполнению больших площадей базальтом. Далее будут формироваться трещины, и суперконтинент разделится ещё раз. Затем планета может испытать период потепления, как это произошло во время мелового периода.
Энергия, генерируемая Солнцем, основана на термоядерном синтезе водорода в гелий. Эта реакция проходит в ядре звезды посредством протон-протонного цикла. Поскольку в ядре Солнца нет конвекции, процесс синтеза приводит к устойчивому накоплению гелия. Температура в ядре Солнца является слишком низкой для ядерного синтеза атомов гелия в тройной гелиевой реакции, так что эти атомы не способствуют чистой генерации энергии, которая необходима для поддержания гидростатического равновесия Солнца. В настоящее время почти половина запаса водорода в ядре израсходована, а остальная часть состоит преимущественно из гелия. Для компенсации неуклонно снижающегося числа атомов водорода на единицу массы температура ядра Солнца постепенно увеличивается посредством повышения давления. Это стало причиной того, что остальной водород подвергается синтезу более быстрыми темпами, тем самым производя энергию, необходимую для поддержания равновесия. Результатом становится постоянное увеличение выхода энергии Солнца. Когда Солнце вышло на главную последовательность, оно излучало только 70 % от текущей светимости, которая затем увеличивалась почти линейно на 1% каждые 110 миллионов лет. Таким образом, через 3 миллиарда лет светимость Солнца, как предполагается, будет на 33 % больше. Водородное топливо в ядре будет в итоге исчерпано через 4,8 миллиарда лет, когда светимость Солнца будет на 67% больше, чем сейчас. После этого Солнце продолжит сжигать водород в оболочке, окружающей её ядро, пока увеличение яркости не достигнет 121% от текущего значения, что ознаменует конец существования Солнца на главной последовательности и начало его перехода на ветвь красных гигантов.
По мере того, как будет возрастать глобальная температура Земли вследствие роста светимости Солнца, будет также возрастать скорость выветривания силикатных минералов. Это, в свою очередь, приведёт к снижению уровня углекислого газа в атмосфере. В течение следующих 600 миллионов лет концентрация CO2 упадёт ниже критического порога (около 50 частей на миллион), необходимого для поддержания C3-фотосинтеза. Деревья и леса в их нынешней форме тогда уже не смогут существовать. C4-фотосинтез может всё же продолжаться при гораздо более низких концентрациях, вплоть до 10 частей на миллион. Таким образом, растения, использующие C4-фотосинтез, смогут существовать по меньшей мере в течение 0,8 миллиарда лет, а возможно — и 1,2 миллиарда лет, после чего рост температуры сделает биосферу нежизнеспособной. В настоящее время C4-растения составляют около 5% растительной биомассы Земли и 1% от известных видов растений. Например, около 50 % всех видов трав (злаки), так же, как и многие виды амарантовых используют C4-фотосинтетические реакции.
Когда уровень углекислого газа упадёт до предела, при котором фотосинтез едва устойчив, доля диоксида углерода в атмосфере снова начнёт возрастать вследствие тектонической активности и жизни животных. Это позволит растительности вновь развиваться. Однако долгосрочная перспектива для растительной жизни на Земле — это полное вымирание, поскольку бо́льшая часть оставшегося в атмосфере углерода окажется связанным в земле. Некоторые микроорганизмы способны к фотосинтезу при концентрации CO2 в несколько частей на миллион, поэтому эти формы жизни, вероятно, исчезнут только из-за повышения температуры и потери биосферы.
В своей работе «Жизнь и смерть планеты Земля» авторы Питер Д. Уорд и Дональд Браунли утверждают, что некоторые формы животной жизни могут продолжить существование даже после того, как бо́льшая часть растительной жизни на Земле исчезнет. Первоначально некоторые насекомые, ящерицы, птицы и мелкие млекопитающие смогут продолжить существование вместе с морской жизнью. Авторы, однако, считают, что без кислорода, пополняемого растительной жизнью, животные, вероятно, вымрут от удушья в течение нескольких миллионов лет. Даже если в атмосфере останется достаточное количество кислорода вследствие живучести той или иной формы фотосинтеза, устойчивый рост глобальной температуры может привести к постепенной утрате биоразнообразия. Бо́льшая часть поверхности станет бесплодной пустыней, и жизнь в первую очередь должна остаться в океане. Как только солнечная светимость станет на 10% выше текущего значения, средняя глобальная температура поверхности достигнет 320 К (47°С). Атмосфера станет «влажной парниковой», что приведёт к безудержному испарению океанов. Модели будущего Земли показывают, что тогда стратосфера будет содержать повышенный уровень воды. Молекулы воды будут разрушаться солнечным ультрафиолетовым излучением посредством фотодиссоциации, из-за чего водород начнёт покидать атмосферу. Конечным результатом будет исчезновение морской воды по всей Земле через 1,1 миллиарда лет. В эту безокеанскую эру на поверхности по-прежнему будут водные бассейны, поскольку вода непрерывно будет высвобождаться из глубоких слоёв коры и мантии. Некоторые запасы воды могут быть сохранены на полюсах и даже могут случаться редкие ливни, но большая часть планеты будет сухой пустыней. Тем не менее, даже в этих засушливых условиях планета может сохранить некоторую микробную и, возможно, даже многоклеточную жизнь. Что произойдёт дальше — зависит от уровня тектонической активности. Устойчивый выход диоксида углерода из-за извержений вулканов в конечном счёте может привести к переходу атмосферы в состояние «суперпарник», как сейчас на Венере. Но без поверхностных вод тектоника плит, вероятно, остановится и большинство карбонатов останутся в земле.