Знаменитый вопрос Кассиля — что будет, если кит нападет на слона? — модель всеобъемлющей проблемы: кто сильнее, что важнее? В науке этот вопрос возрождается вновь и вновь в дискуссиях о роли опыта, об отношениях опыта и теории.
Опыт — высший судья в науке. С этим теперь никто не спорит. Но как отличить праведного судью от неправедного? Ведь опыты иногда приводят к противоречивым, несовместимым результатам. И как быть, если судья воздерживается от ответа… А бывает и так, как об этом рассказал Пушкин:
Глухой глухого звал к суду судьи глухого;
Глухой кричал: «Моя им сведена корова!»
«Помилуй, — возопил глухой тому в ответ. —
Сей пустошью владел еще покойный дед».
Судья решил: чтоб не было разврата,
Жените молодца, хоть девка виновата.
Судья может судить справедливо, только зная факты и опираясь на закон. Это относится и к науке. Опыт, взятый сам по себе, способен дать лишь очень мало или даже ничего. Для того чтобы правильно поставить опыт и понять его результаты, необходимы правильные законы, правильная теория.
Но как опознать правильные законы в науке, какую теорию следует считать истиной? Ясно, что при этом нельзя просто ссылаться на опыт. Иначе получается порочный круг. Иван кивает на Петра, а Петр кивает на Ивана.
В науке, как и в юриспруденции, законы представляют собой сформулированные человеком и проверенные опытом человечества формулы. В юриспруденции — это словесные выражения объективно сложившихся человеческих отношений. Результат многовекового развития общества. В точных науках — это выраженные на языке математики объективные соотношения, присущие явлениям природы или возникающие в ситуациях, созданных человеком, в научных экспериментах. Только в этом смысле следует понимать известную фразу: законы природы создаются человеком. Человек формулирует их математическим языком, чтобы таким путем понять происходящее в природе.
И в юриспруденции, и в науке законы должны удовлетворять целому ряду логических требований. Вот важнейшие из них:
Непротиворечивость. Один закон не должен противоречить другому. Если два закона противоречивы, один из них должен быть отброшен. Или необходим третий закон, определяющий условия применения первых двух: в таких-то случаях применять первый, а в этих — второй.
Полнота. Все возможные ситуации должны попадать в сферу действия свода законов. Если свод законов полон, то любая возникшая, даже ранее не встречавшаяся, ситуация должна попасть в сферу его действия. Если хотя бы одна новая ситуация оказывается непредусмотренной, то свод законов не полон и нуждается в дополнении. Есть и менее важные требования, но и они существенны, например:
Простота. Желательно, чтобы количество отдельных законов было минимальным, а каждый из них охватывал много соответствующих ситуаций.
Однозначность и ясность. Необходимо, чтобы законы не допускали различных толкований и не требовали дополнительных разъяснений.
Законы науки и учет их следствий требуются для правильной постановки экспериментов и при обработке полученных результатов. Эксперименты необходимы для проверки правильности предсказаний, даваемых теорией. Ибо теория, лишь объясняющая известное, но не позволяющая продвинуться в неведомое, не делающая предсказаний, поддающихся проверке, не может претендовать на то, чтобы заменить ранее существовавшие теории. В этом проявляется диалектика познания: только совокупность опыта и теории составляет настоящую науку.
Мы знаем, что будет, если хотя бы один новый опыт противоречит теории, то есть противоречит огромной совокупности прежних опытов, из которых выросла эта теория. Речь идет, конечно, только о правильном опыте, об опыте, поставленном и обработанном без ошибок и, желательно, повторенном независимыми исследователями. Такой опыт не может отвергнуть результатов других столь же тщательно поставленных и обработанных опытов. Он является лишь сигналом о том, что теория не полна. Что она должна быть дополнена или переработана.
Но что будет, если внезапно обнаружится противоречие между двумя фундаментальными теориями? Общепризнанными теориями, относящимися к двум не связанным между собой областям науки и до того непринужденно объяснявшими огромное количество опытных данных.
Слон вышел на отмель, около которой плещется кит!
Победы королевы Механики
Великая древняя наука механика… Вместе с арифметикой и геометрией она пришла к нам из тьмы веков. Это не просто красивая метафора. Возраст «Механики» Аристотеля перевалил за двадцать веков. А еще четыре века назад она безраздельно властвовала в умах образованных людей и, несмотря на множество своих ошибок, служила фундаментом великолепных зданий и мостов, акведуков и прекрасных скульптур. Надежным фундаментом, ибо во всех подобных случаях достаточно законов статики, относящихся к условиям равновесия сил, действующих на неподвижные тела. Главные же ошибки «Механики» Аристотеля начинаются там, где он пытается объяснить процесс движения.
Движение оставалось непостижимой тайной для древних мудрецов — их мышление было сугубо конкретным. Даже богов они наделяли человеческим обликом, а герои и чудовища выходят за пределы реального только своими масштабами: Геракл — силой, Аргус — количеством голов. Пределом абстракции для древних мыслителей было число и простейшие геометрические фигуры. В построении системы чисел они сделали лишь два шага. Простые числа, при помощи которых можно считать предметы, и простые дроби — отношения простых чисел, позволяющие делить то, что поддается делению. Когда Пифагор обнаружил несоизмеримость диагонали квадрата с его сторонами, если их размер — единица, он велел ученикам сохранить это в тайне. Существование величин, несопоставимых с простыми дробями, казалось ему ниспровержением основ. Страх перед такими величинами привел к застою математики на два тысячелетия.
Дымные костры инквизиции еще подсвечивали гнетущую ночь средневековья, когда Коперник, Кеплер и Галилей, отбросив древние предрассудки, положили начало новой науке о небесных и земных движениях. Коперник и Кеплер сосредоточили свои усилия на движении планет. Галилей, кроме того, стремился понять законы, лежащие в основе движений обычных земных тел и механизмов. Так возник фундамент современной науки, в который вошла мощь абстрактного мышления и сочетание все более сложной математики с искусством опытного исследования природы, пионером которого по праву считается Галилей. Под этим фундаментом сохранились, обеспечивая его устойчивость, древние блоки арифметики и алгебры, геометрии и логики, астрономических наблюдений и законов рычага. Конечно, кое-что пришлось удалить, иное лишь впоследствии вошло в общий монолит знаний после многовекового забвения.
Ньютон хорошо сказал, что ему удалось создать что-то новое только потому, что он стоял на плечах гигантов. Великолепный труд «Математические начала натуральной философии» сообщал людям суть научного метода, развитого Ньютоном на основе, заложенной Галилеем.
Вот этот метод: исходя из опыта обнаруживать «принципы» — фундаментальные свойства природы; на основе «принципов» строить законы — математические зависимости, связывающие между собой различные характеристики явлений и процессов, полученные из измерений; при помощи законов выводить следствия, поддающиеся проверке путем специально поставленных новых опытов. Этот метод и сейчас надежно служит ученым, успешно сочетаясь с методами гипотез. Конечно, речь идет не о гипотезах, придумываемых для объяснения отдельного частного явления, с которыми так страстно боролся Ньютон. Каждая гипотеза такого рода обычно требует дополнительных гипотез, объясняющих, почему новая гипотеза не противоречит другим явлениям или другим гипотезам, и этой порочной цепи нет конца. Но Ньютон сам с большим искусством создавал гипотезы другого рода. Их скорее следовало бы называть «пробными принципами». Они с самого начала строятся так, что оказываются согласующимися со множеством фактов и явлений или хотя бы с широким кругом родственных процессов, и способны вести к предсказаниям, поддающимся проверке опытом. Ко времени появления «Начал» Ньютон уже был известным и общепризнанным ученым. Но не это явилось причиной совершенно необычного успеха его книги — она оказалась распроданной так быстро, как сейчас расходятся бестселлеры, хотя это был не детектив, а сложный научный труд. Причина заключалась в революционном содержании «Начал». Впервые ученому удалось связать общими законами земные и небесные явления. Объяснить на основе механики процессы, не имеющие видимой общности с какими-либо механизмами.