Литмир - Электронная Библиотека
Содержание  
A
A

Первым, кто начал ставить опыты с целью установить связь движения с силой, вызывающей рассматриваемое движение, был Галилей. Опыты Галилея и полученные им результаты стали одной из основ, на которой Ньютон построил здание динамики — раздел механики, связывающий силы с вызываемыми ими движениями. В основу вычислительной астрономии Ньютон положил три сформулированных им закона механики и установленный им закон всемирного тяготения. Исходя из этих законов и новых, созданных им, разделов математики, он мог вычислить все движения планет и их спутников. Это произвел ошеломляющее впечатление на современников, не только на ученых, но и на людей, далеких от науки.

Первое, а затем и последующие издания фундаментального труда Ньютона «Математические начала натуральной философии» были раскуплены, как теперь раскупаются бестселлеры, несмотря на то что само заглавие предупреждало: книга полна математики и посвящена натуральной философии (физике). В книге изложен новый метод исследования природы и множество новых выдающихся результатов, обогативших науку, в том числе астрономию.

Огромный труд, закончившийся в 1687 году изданием «Начал», не исчерпал интереса Ньютона к проблеме мироздания. Его смущали следствия, вытекающие из закона тяготения. Ему было ясно, что мир, имеющий любые, но конечные размеры, не может быть устойчивым. Даже если бы все вещество было первоначально равномерно распределено в ограниченном пространстве, то «вещество с краев пространства тяготело бы к внутреннему веществу и вследствие этого падало к середине всего пространства и там соединилось бы в большую шаровидную массу».

«Но, — пишет он дальше, — если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда не собралось бы в одну массу». Ньютон обдумал и эту ситуацию и, конечно, сразу обнаружил ее неустойчивость. Малейшее отклонение от равномерного распределения вещества должно дать толчок к разрушению такого распределения «И еще труднее вообразить, что все частицы в бесконечном пространстве располагались бы одна меж другими так точно, что оставались бы неподвижными в полном равновесии».

И поясняет свою мысль примером:

«Ибо я полагаю это столь же трудным, как заставить не одну, а бесконечное множество иголок (столько, сколько частиц в бесконечном пространстве) стоять в точном равновесии на своих остриях». Как совместить эти рассуждения с предположением о вечности или с догматом церкви о сотворении мира?

Ньютон не сумел найти выход из этих противоречии. Он оставил их в наследство потомкам, указав, что предположение о бесконечности Вселенной неизбежно ведет к тому что вещество в ней рано или поздно соберется во множество комков.

Небесная механика, как называли в то время вычислительную астрономию, стала основой трудов многих выдающихся физиков и астрономов, разрабатывавших все более совершенные вычислительные методы, необходимые для более точных астрономических расчетов. Но идейные основы, заложенные Ньютоном, оставались неизменными. Неизменно стоял и сакраментальный вопрос: с чего все это началось?

Ньютон, руководствуясь выдвинутым им правилом — не создавать гипотез, не касался этого вопроса, он не видел возможности подступиться к этой проблеме.

Полученные им уравнения, однако, обладали удивительной силой. Они позволяли решить любую задачу астрономии, исходя из данных, почерпнутых из опыта в какой-то определенный момент времени. Имея такие данные, можно было рассчитать и будущее, и прошлое. Например, для Солнечной системы, где планеты и их спутники совершают периодические движения, поддаются вычислению их положения в сколь угодно далеком прошлом и будущем. Ньютона тревожила эта ситуация. На Земле, где нет ничего вечного, тоже происходит множество событий, поддающихся расчету и предсказанию. Приливы сменяются отливами. Чередуются времена года. Меняются русла ручьев и рек. Брошенные предметы падают на Землю. Но не все подчиняется законам механики. Почему нагретые тела остывают? Почему животные и растения рождаются и умирают? Как связано вечное с преходящим? Это были вопросы без ответа. Почему же его уравнения предписывали небесным явлениям вечное повторение?

Теория свидетельствовала о вечности Солнечной системы. Даже за пределами Солнечной системы, там, где расположены звезды, все тоже выглядит вечным и неизменным. Ньютону это казалось сомнительным. В зрелые годы он не смог удовлетвориться умалчиванием. Он неоднократно писал о том, что, будучи уверен в справедливости закона тяготения, как и остальных законов механики, он не знает, чем вызвана сила тяготения и как начались небесные движения. Уравнения говорили о том, что никакого начала никогда не было. Но возможно и другое: некогда, в некий начальный момент, мир вдруг возник таким, каким мы знаем его теперь. Начиная с этого момента он развивался так же, как теперь. И будет таким вечно. В конце жизни разум Ньютона изнемог в поисках истины. Он сослался на бога, отнеся на его счет начальные условия, начальный толчок, сотворение мира.

Борьба с вечностью

Представление Ньютона о вечности Вселенной вместе с разработанным им методом исследования стало основой того, что мы называем классической физикой. Тревожившие его мысли о начальных условиях, о конечности и бес конечности Вселенной отошли на второй план и со временем были забыты.

Стремление человечества к познанию мира, результаты многочисленных опытов снова поставили на повестку дня вопрос о начальных условиях. Главную роль при этом сыграло осознание закона сохранения энергии. Астрономам стало ясно, что Солнце, выделяя огромную энергию, не может светить вечно. Не могут вечно вращаться вокруг осей планеты и спутники. Ведь приливное трение превращает в тепло запасы энергии собственного вращения планет. Это определяет будущую эволюцию Солнечной системы. Вращение планет и спутников вокруг их осей постепенно замедлится, период этого вращения будет увенчиваться до тех пор, пока он сравняется с периодом орбитального движения. Так уже случилось с планетой Меркурий и с Луной. Они всегда обращены к центральному телу одной стороной: Меркурий к Солнцу, Луна к

Земле.

Как ни малы атомы, молекулы и пылинки, разбросанные в космическом пространстве, они тормозят орбитальное движение планет и их спутников. Поэтому их орбиты постепенно сжимаются так, что они вращаются не по эллипсам, а по спиралям, очень медленно, но неизбежно приближающимся к центру.

Планеты должны в будущем упасть на Солнце, а спутники на свою планету. Но перед этим силы притяжения центрального тела разрушат их, образовав подобие колец Сатурна, которые возникли при разрушении одного или нескольких из его спутников, двигавшихся слишком близко к планете. В последнее время улучшение методов наблюдения, включая наблюдение при помощи космических обсерваторий, позволило обнаружить кольца, подобные кольцам Сатурна, и вокруг других планет.

Так развитие физики и астрономии привело к неоспоримому выводу: Солнечная система не вечна, ее существование ограничено.

Это принципиальный результат. Он возник, когда вычислить время до разрушения планет и их спутников еще не умели (сейчас известно, что это время измеряется миллиардами лет), но ученые уже не могли избавиться от мысли о том, что если Солнечной системе уготован конец, то у нее должно быть и начало.

Вопрос о происхождении Солнечной системы тревожил не только астрономов и физиков, но и философов. Первым взял слово один из крупнейших философов И. Кант. Кант был философом-идеалистом создателем особого философского направления, которое сохранило его имя: кантианство, философия Канта.

Кант был глубоко образованным человеком, обладавшим обширным кругозором и знаниями в области конкретных наук.

Обдумывая вопрос о судьбе Солнечной системы, Кант не пытался найти ответ только в сфере философии. Он не уподобился и натурфилософам, пытавшимся решать все вопросы путем словопрений, путем логического вывод; следствий из причин, казавшихся им подходящими для; решения конкретной задачи.

49
{"b":"837640","o":1}