Литмир - Электронная Библиотека

Это не означает, что в наши дни ИИ не создает проблем. Он повинен во многом, от легкого раздражения, которое вызывает у своего создателя, до проявления стойких человеческих предрассудков и аварий беспилотных автомобилей, так что современный ИИ не так уж безобиден. Но если мы хотя бы будем иметь представление о том, что такое искусственный интеллект, мы сможем предвидеть появление некоторых проблем.

Вот сценарий более вероятной современной ИИ-катастрофы.

Скажем, в Кремниевой долине один стартап предлагает продукт, который будет экономить корпорациям время при поиске сотрудников, – ИИ станет просматривать и сортировать резюме претендентов на должность, выделять возможных «ударников труда», анализируя видеозаписи коротких собеседований. Компаниям такое предложение, вероятно, понравится, ведь они тратят много времени и ресурсов на интервью с десятками кандидатов лишь для того, чтобы найти среди них одного, самого подходящего. Компьютерные же программы не устают, не чувствуют голода, не пытаются сводить личные счеты. Однако есть несколько тревожных признаков, сигнализирующих о том, что инициативу ждет провал.

Тревожный признак № 1. Проблема слишком сложна

Поиск наилучшего кандидата для работы – действительно сложное занятие. Даже у людей едва получается с этим справляться. Действительно ли человек искренне радуется возможности получить работу в компании или он лишь хороший актер? Учли ли мы физические ограничения кандидата или разницу в культурах? Если в эту кашу бросить ИИ, отвечать на подобные вопросы станет еще сложнее. Для искусственного интеллекта понять нюансы шутки, уловить тон разговора или распознать отсылки к другой культуре – практически непосильная задача. А что, если кандидат вдруг упомянет нечто, относящееся к последним новостям? У ИИ, обученного на прошлогодних данных, не будет и шанса понять, о чем идет речь, – и в результате он «накажет» кандидата, присвоив ему низкий балл за то, что он якобы говорит бессмыслицу. Чтобы делать свое дело хорошо, ИИ должен обладать широким набором навыков и принимать в расчет огромный объем информации. В противном случае нас ждут неприятности.

Тревожный признак № 2. Проблема заключается совсем в другом

С проектированием ИИ для подбора кандидатов есть такая загвоздка: на самом деле мы просим ИИ отбирать не наилучших кандидатов, а тех, которые в наибольшей степени напоминают кандидатов, понравившихся HR-специалистам в прошлом.

Может, это не так уж и плохо, если те специалисты всегда действовали безошибочно. Но в большинстве компаний в США есть проблема с культурно-гендерным разнообразием; в особенности она характерна для менеджеров и в еще большей степени проявляется, когда менеджеры по кадрам оценивают резюме и проводят собеседования. При прочих равных условиях резюме кандидатов с именами белых мужчин скорее пройдут на этап интервьюирования, чем резюме с женскими именами или именами, характерными для национальных меньшинств[13]. Даже HR-специалисты, принадлежащие к женскому полу или национальным меньшинствам, непроизвольно отдают предпочтение белым кандидатам-мужчинам.

Большое количество плохих или откровенно вредоносных ИИ-программ были созданы людьми, которые думали, что проектируют искусственный интеллект для решения одной конкретной задачи, но, не ведая того, научили машину делать нечто совсем иное.

Тревожный признак № 3. ИИ находит легкие пути

Помните ИИ – определитель рака кожи, который на самом деле оказался распознавателем линеек? Искать малозаметные различия между здоровыми клетками и раковыми сложно, и поэтому ИИ решил, что куда проще проверить, есть на изображении линейка или нет.

Если вы предложите ИИ для выявления лучших кандидатов обучающие данные, где есть смещение (а так почти наверняка и произойдет, если только вы не проделаете предварительно огромную работу, устранив нежелательный перекос), то вы подскажете ему легкий способ улучшить точность выбора кандидатов с «наилучшими качествами»: отбирать белых мужчин. Это намного легче, чем анализировать нюансы того, как человек выбирает слова. ИИ может найти где еще можно срезать путь – скажем, если мы снимали всех кандидатов, успешно прошедших конкурсный отбор, определенной камерой, есть риск, что алгоритм начнет читать метаданные видео и отбирать только тех, кого снимали той же камерой.

Искусственный интеллект всегда будет идти к цели самым коротким путем – просто потому, что не видит пути лучше!

Тревожный признак № 4. ИИ учился на основе дефектных данных

В IT есть старое выражение: мусор на входе – мусор на выходе. Если задача алгоритма – имитировать действия людей, принимающих некорректные решения, то для него достичь совершенства – значит в точности воспроизводить те решения с недостатками и прочим.

Дефектные данные – неподходящие примеры для обучения или симуляции со странной физикой – вгонят ИИ в бесконечный цикл или направят по неверному пути. Во многих случаях проблема, с которой ИИ надо справиться, кроется в самом обучающем наборе, и неудивительно, что решения он в итоге находит дефектные, ведь такими были и входные данные. Фактически тревожные признаки № 1−3 чаще всего и говорят о проблемах с данными.

ОБРЕЧЕННЫЙ ИЛИ ВОСХИТИТЕЛЬНЫЙ

Пример с системой подбора кандидатов, увы, не выдумка. Многие компании уже предлагают системы скрининга (фильтрации) резюме или видеоинтервью на основе искусственного интеллекта, и редко кто делится информацией о том, как они устранили искажения и что сделали для более широкой представленности разных культур, а также людей с ограниченными возможностями. Сложно выяснить, какую именно информацию их алгоритм использует при отборе. При должной аккуратности создать ИИ для скрининга резюме, который окажется измеримо меньше предвзят, чем HR-менеджеры, вполне реально, но пока нет подтверждающей это статистики, можно быть уверенным, что искажения никуда не делись.

Справится алгоритм с задачей или нет, по большей части зависит от того, подходит ли в принципе для ее решения ИИ. Во многих задачах ИИ в самом деле показывает бо́льшую эффективность по сравнению с человеком. Давайте выясним, что это за задачи и почему ИИ в них так хорош.

Глава 2

ИИ везде, но где именно?

Кокетливый интеллект. Как научить искусственный интеллект флиртовать? - i_014.jpg
ЭТО РЕАЛЬНЫЙ ПРИМЕР, Я НЕ ШУЧУ

В китайском городе Сичан есть ферма, довольно необычная по ряду причин. Во-первых, это самая большая ферма подобного типа в мире, и ей нет равных по продуктивности. Каждый год она производит шесть миллиардов особей Periplaneta americana, причем на один квадратный метр приходится свыше 301 тысячи[14]. Достигнуть максимума продуктивности позволяет использование алгоритмов, контролирующих температуру, влажность, подачу корма и даже автоматический анализ генетических свойств и скорости роста Periplaneta americana

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

вернуться

13

Marianne Bertrand and Sendhil Mullainathan, “Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination,” American Economic Review 94, no. 4 (September 2004): 991–1013, https://doi.org/10.1257/0002828042002561.

вернуться

14

Stephen Chen, “A Giant Farm in China Is Breeding 6 Billion Cockroaches a Year. Here’s Why,” South China Morning Post, April 19, 2018, https://www.scmp.com/news/china/society/article/2142316/giant-indoor-farm-china-breeding-six-billion-cockroaches-year.

6
{"b":"836120","o":1}