Абрам Федорович Иоффе рассказывал однажды, как в 1923 году он познакомился на 4-м Сольвеевском конгрессе физиков в Брюсселе с Полем Ланжевеном. Знакомство было окрашено и политическими и чисто научными страстями той поры. Ланжевен, выдающийся физик и общественный деятель, человек редкого благородства и смелых убеждений, презирал французских правителей во главе с Раймондом Пуанкаре — одним из организаторов недавних кровавых походов Антанты на молодую Республику Советов.
Физик из революционной России среди участников Сольвеевского конгресса! — это было радостное открытие для Ланжевена. Он просил Иоффе поверить, что ему, французу, стыдно за Францию Пуанкаре. Ланжевен был полон всяческого дружелюбия. Он равно откровенно говорил и о политике и о своих научных взглядах. Между прочим, он рассказал Иоффе, что один его ученик в Париже представил чрезвычайно интересную диссертацию. «Идеи диссертанта, конечно, вздорны, — сказал Ланжевен, — но развиты с таким изяществом и блеском, что я принял диссертацию к защите». Он назвал имя автора работы: Луи де Бройль.
Абрам Федорович Иоффе вспомнил эту историю в разговоре с двумя литераторами в феврале 1960 года. Такие вещи помнятся и через 37 лет! Полный величайшего уважения к Ланжевену академик Иоффе с улыбкой повторял его тогдашние слова. Улыбка означала: «Ланжевена нельзя винить в слепоте — он был ученым другого поколения, чем де Бройль».
Один из собеседников Иоффе, писатель Даниил Гранин, работал в то время над романом, где героями были физики. Он тотчас сказал: «Но замечательна широта Ланжевена — не согласившись с научными идеями ученика, он все-таки дал жизнь его диссертации!» А другой собеседник — автор этих строк — немедленно подумал, как интересно будет привести эту историю в рассказе о рождении современной механики микромира. Словом, каждый из нас со своей колокольни взглянул на рассказанный старым академиком интереснейший эпизод. «Вот она, эйнштейновская драма идей!» — подумал я.
Тут, в самом деле, все было полно значения.
Подумайте, советский физик на международном конгресс се был в начале 20-х годов своего рода диковиной, хотя одна из революционнейших эпох в познании природы неспроста совпала с самой революционной порой в истории человеческого социального мышления, и гость из молодой России должен был бы явиться почетным гостем не для одного Ланжевена, будущего коммуниста, а для всех людей науки. Полно значения было и ланжевеновское невольное чувство стыда за беды, принесенные стране революции реакцией Запада, Драматичен был и неосознанный конфликт в душе ученого — конфликт между смелостью его исторических взглядов и осторожностью взглядов научных. Будоражило мысль и скрытое несогласие учителя и ученика, преодоленное только нравственной широтой Ланжевена, о которой с восхищением сразу сказал Гранин. Впрочем, только ли нравственной? Может быть, Ланжевен благословил «изящную, но вздорную» диссертацию де Бройля, кроме всего прочего, потому, что втайне чувствовал возможную правоту ученика, хотя и не мог с нею примириться? (Известно, что Ланжевен сам послал дебройлевскую работу Эйнштейну. Значит, он сознавал ее серьезность, ее важность и глубину?)
Этот давний эпизод ярче яркого осветил муки рождения квантовой физики.
Миновало три года со времени защиты дебройлевской диссертации. И вот в научных журналах всего мира печатаются «электронные снимки» кристаллов, совершенно подобные хорошим рентгенограммам. И опытные данные подтверждают с желанной точностью дебройлевскую формулу для длины электронных волн! Согласитесь, такие события не могли оставить современников равнодушными.
(Пожалуй, удивительно, что волновые свойства вещества не были впервые открыты в лаборатории на улице Байрона в Париже, где столько лет работал с рентгеновскими лучами де Бройль-старший, Морис. Ведь там, в этой лаборатории, проводилось множество опытов по фотоэлектрическому эффекту, в которых рентгеновское излучение обнаруживало свойства потока частиц. И там у де Бройля-младшего впервые родились его теоретические идеи…)
Подтверждение кабинетной истины пришло сначала от Дэвиссона и Джермера из Америки, потом от Томсона — сына старого Джи-Джи — из Англии, потом от Кикучи из Японии, потом от Руппа из Германии, потом от Тартаковского из Советской России. И еще и еще — из лабораторий различнейших стран. Многократно доказанная на всевозможные лады, но всякий раз прямо и непосредственно, волнообразность электрона стала таким же неопровержимым физическим фактом, как и его корпускулярность.
Это было второе открытие электрона.
И еще громче — это было, в сущности, второе открытие вещества, второе — после открытия его атомной зернистости.
В конце 20-х годов везде, где люди спорят о злобе дня — на улице и за домашним чаем, в поездах и за столиками кафе, — совсем незнающие расспрашивали относительно знающих о «волнах материи», как сегодня люди расспрашивают друг друга о таинственном антивеществе, о непонятном крушении еще более непонятного закона сохранения четности, о неведомой праматерии и тому подобных вещах.
Тот давний всеобщий интерес к новым странностям микромира был и в самом деле того же происхождения, что интерес сегодняшний к странностям новейшим. Конечно, для природы любые странности — и новые и новейшие — стары, как она сама. Но человеку они открываются постепенно. И мы не знаем, какие удивления нам еще суждены.
Одно несомненно — последнего удивления не будет. И радость узнавания мира — единственная, у которой не бывает конца в жизни человека. Чем отвлеченней она, тем бескорыстней. И она равно доступна всем — и академику и ребенку: дело тут не в степени образованности — перед лицом неизлечимой человеческой страсти знать, как устроен мир, равны первоклассник и доктор наук. Жажда одна, утоляется она только по-разному.
Но если радости познания у них в общем-то очень похожи, то печали неведения совсем различны. Ах, если бы академику — детскую убежденность, что есть на свете взрослые, знающие все! Но нет, ученому, идущему впереди, не к кому обращаться за ответами, кроме самой природы. И не школьные неприятности, вроде двоек, сопутствуют в его жизни радостям узнавания мира, а треволнения посущественней.
Знал ли де Бройль, какие огорчения принесет ему и какую смуту посеет в физике, а за физикой — и в философии естествознания открытие неких «волн материи»?
В 1923 году он этого не знал. Но через тридцать лет он вынужден был сказать уже знакомые нам слова, что открытие двойственности волн-частиц было «наиболее драматическим событием в современной микрофизике».
7
Мы убедились: первые же открывшиеся науке элементарные частицы — фотон и электрон — выдали физикам такую непредвиденную тайну материи, что микромир предстал перед ними в совершенно неожиданном обличье. Фотон с помощью Эйнштейна и электрон с помощью де Бройля рассказали физикам, что материя в своих глубинах двулика. Одинаково двулика и в атомных глубинах вещества и в структурных глубинах силовых полей, так что и разница-то между веществом и полями в мире элементарных частиц стирается: все «первоосновы материи» — «кентавры», частицы со свойствами волн или волны со свойствами частиц.
Ничего подобного не знала классическая физика. Она никогда не имела дела с миром таких причудливых сущностей. Не потому ли, что она раскрывала законы природы в явлениях других — несравненно больших — масштабов?
Да, именно поэтому. Прежде всего поэтому. Тут очень ярок переход количества в качество.
Когда де Бройль искал связь между свойствами электрона, как частицы и как волны, он имел право не интересоваться никакими иными характерными чертами этой микродетальки любого вещества. Заряд? Возможные размеры? Вероятная форма?.. Все это было не важно для его цели. Так не важны были Кеплеру красноватый цвет Марса или температура Солнца для установления законов обращения планет. Электрон был для де Бройля движущимся образованием из материи и больше ничем — кусочком материи в двух проявлениях: корпускулярном и волновом. Любой другой кусочек материи равный электрону по массе — например, еще не открытый в ту пору позитрон, — должен был бы обладать и волновыми свойствами электрона. Если бы мы могли отковырять от стула щепочку электронного веса, то и ей была бы свойственна та же мера волнообразности.