Космические глубины и — падающий лифт! Они, великие, каким-то образом действительно умели покидать ограниченный мир Земли, не отрываясь от ее почвы. И потому-то ответ Резерфорда Вину был так не романтичен: нужен только здравый смысл для постижения теории относительности, ибо она сама создана трезвой, безжалостно точной мыслью и простой необходимостью понять непонятное.
Эта же необходимость вынудила английского ученого трезво отважиться на ссору с классикой — без всякого страха перед возможными последствиями такой ссоры для будущего всей физики микромира. Он знал, что делает лишь первый шаг, и заранее предупредил критику классиков: «Вопрос об устойчивости предложенного атома на этой стадии не нуждается в рассмотрении…» Пока не нуждается! Вот и все. А там посмотрим.
Но пора для рассмотрения этого вопиющего противоречия с прежней теорией должна была наступить. И очень Скоро. Атом Резерфорда не мог оставаться обреченным. В 1911 году еще никто не знал, как вылезти из конфликта. Впрочем, не стоит утверждать это так уж категорически…
Один писатель изобразил великого англичанина уединенным искателем истины. Это смешное недоразумение, такое же смешное, как повальное причисление первооткрывателей к воинству романтиков или мучеников. Всю жизнь Резерфорд был окружен веселым интернационалом друзей и учеников — блестящим, шумным, смелым интернационалом одаренных ученых из разных стран. В шутку можно было бы сказать, что атомную физику нашего века делали и делают музыканты и теннисисты, лыжники и автомобилисты, яхтсмены и альпинисты… В известном биографическом справочнике «Кто-кто?» в ряду существенных сведений об ученых можно найти пункт «хобби» — неделовое пристрастие, увлечение на досуге, любимый отдых. Вы можете узнать, что у старика Джи-Джи Томсона это был теннис, а у молодого Капицы — мотоцикл и шахматы. У Резерфорда — гольф, у Эйнштейна — парусник и скрипка, у Тамма — альпинизм, у Гейзенберга, как у Планка, — рояль… Наш век многое изменил в старом типе ученого. Молодой атомной наукой занимались и занимаются люди не в строгих сюртуках и белых манишках. С фотографий смотрят улыбающиеся молодые лица, в которых чаще всего нет былой почтенной солидности и маститого самоуважения, а есть простота и доступность и какая-то, я бы сказал, необязательность живого выражения глаз, как у художников и спортсменов. Это и у русских, и у итальянцев, у американцев и французов, и даже у традиционно педантических немцев и традиционно сдержанных англичан.
В 20-х и 30-х годах, кроме одного из любимых сотрудников Резерфорда, Петра Леонидовича Капицы[10], в Кембридже работали такие видные советские физики, как Ю. Харитон, А. Лейпунский, К. Синельников…
А раньше, в 10-х годах, за несколько лет до первой мировой войны, как раз тогда, когда появился в науке «обреченный атом», среди других паломников из разных углов Европы, Америки, Азии стал бывать и работать в Манчестере молодой физик из Дании, имя которого в ту пору вряд ли кому-нибудь что-нибудь говорило. Однако Дарвин, узнавший о рождении «обреченного атома» через полчаса после того, как это произошло, утверждает, что уже тогда у двадцатишестилетнего датского ученика Резерфорда «подход к основным принципам физики был глубже, чем у остальных ученых». Эйнштейн впоследствии назвал молодого датчанина человеком «с гениальной интуицией и тонким чутьем», а плоды его интуиции — «высшей музыкальностью в области мысли».
Друг и биограф Резерфорда профессор Ив позже вспоминал: «Однажды в 1913 году, когда я был у Резерфорда дома, в комнату вошел юноша довольно хрупкого вида. Резерфорд тотчас увел его в свой кабинет. Жена Резерфорда объяснила мне, что этот юноша — из Дании и что ее муж очень высоко расценивает его работу. Не нужно удивляться — это был Нильс Бор!»
В самом деле, в поспешности, с какою Резерфорд увел своего копенгагенского ученика в кабинет, не заключалось ничего удивительного: им было о чем поговорить! Именно тогда Нильс Бор первым увидел путь спасения планетарной модели атома. Со временем этот путь привел к созданию механики микромира.
7
Ученые-естествоиспытатели всегда на стороне действительности. У них нет права сказать: «Тем хуже для фактов». Раньше или позже они приходят к добровольному признанию: «Тем хуже для теории» Физики поссорились с классической электродинамикой потому, что она поссорилась с атомом, Ее законы предсказывали одно, а он вел себя по-другому, Значит,"где-то на границах атома власть классических законов кончалась. Надежда на спасение планетарной модели могла заключаться только в том, что, быть может, у природы есть какие-то неизвестные законы, которым подчинила она внутриатомные электроны. Тогда этими-то еще неведомыми законами объясняется, почему устойчивы атомы.
Однако так ли уж обязательно было спасать модель Резерфорда? Не проще ли было просто отвергнуть ее и придумать другую? Нужно понять, что у физиков не было выбора. После того как они убедились, что все положительные заряды концентрируются в сердцевине атома — в тесном ядре, — у них уже не было выбора! В самом деле: для отрицательно заряженных электронов (а число их должно было равняться заряду ядра, дабы атом в целом был нейтрален) не оставалось другого места, как вдали от ядра. Представить, что электроны покоятся в отдалении от центра атома, было невозможно: тогда ядро немедленно притянуло бы их. Вообразить их в прямолинейном и равномерном движении было столь же нелепо: тогда они покинули бы пределы атома. Им надлежало двигаться вокруг центра по замкнутым орбитам, чтобы атом не распылился сам собой. И при этом двигаться довольно быстро, чтобы центробежная сила была в состоянии противоборствовать силе притяжения ядра. Образ планетной системы возник по необходимости: вы сами видите — выбора не было.
Но движение по замкнутым орбитам — это движение по кривым, движение с непрерывными поворотами, с неизбежным излучением, с потерями энергии, с неминуемым падением по спирали на неумолимо притягивающее ядро.
Можно было подвергнуть сомнению две вещи — или неумолимость притяжения, или неизбежность излучения. Однако сомневаться во взаимном притяжении положительных и отрицательных зарядов не позволяли ни опыт, ни логика. Опыт подтверждал это постоянно, начиная с той легендарной поры, когда древние греки натирали янтарь и притягивали натертой палочкой всякую мелкую всячину. Само понятие электричества пошло отсюда, потому что по-гречески янтарь — «электрон». Стоней только вспомнил это слово, когда решил в 1891 году дать название еще не открытому гипотетическому единичному заряду. А логика говорила: если нет притяжения со стороны ядра, тогда электроны — вольные птицы, тогда вообще нет атома и не из-за чего копья ломать.
Оставалось усомниться в неизбежности излучения. Вот этой неизбежности вовсе не требовала логика и ее не подтверждал опыт. На ней настаивала лишь старая теория. Логика говорила: если излучение неизбежно, то атом обречен, а так как он устойчив, то, очевидно, такой неизбежности нет. Опыт вопрошал: если излучение обязательно, то оно должно происходить непрерывно, но тогда отчего же спектры атомного излучения прерывисты? Отчего разные атомы дают разные цветовые наборы отдельных спектральных линий?
Дело в том, что атомы действительно излучают световую энергию. Мы живем в разноцветном мире. Мириады сигналов о маленьких актах преломления, отражения, излучения света приходят к нам со всех сторон, ото всех веществ. Нет смысла гадать, как выглядел бы наш мир, если бы все атомы на протяжении всей своей жизни непрерывно излучали свет: зрелище такого мира, сотканного из обреченных атомов, было бы кратко, как мгновенный промельк кадра на вдруг оборвавшейся киноленте.
Да, атомы излучают. Но совсем не так, как полагалось бы по прогнозам старой теории.
Нужно ли рассказывать, почему в гранях призмы возникает радуга? Световые лучи разной частоты электромагнитных колебаний по-разному преломляются призмой и, входя в нее параллельным пучком, выходят веером. Физики пропускают смешанный световой поток через узкую щель, он падает на призму, и за нею — на экране или на фотопленке — появляется веер изображений щели: каждый луч определенной частоты дает свою фотографию щели — узкую полоску. Это и есть спектральная линия. Когда в смешанном потоке присутствуют лучи любой длины волны, в спектральном веере уже нельзя различить отдельных линий — следуя непрерывно друг за другом, они сливаются в одну сплошную полосу, красную на одном конце и фиолетовую на другом. Они сливаются в радугу.