Литмир - Электронная Библиотека

А между тем противоречие с классикой было крайне простым. И в то же время роковым.

5

Наш третий искусственный спутник Земли совершал 6858-й оборот, когда писалась эта страница. Он был еще полон сил и с прежней убедительностью доказывал могущество людей, подчинивших земное тяготение своей воле. Но каждый знал, что придет час, когда кружение спутника прекратится, его энергия постепенно растратится на неизбежное торможение в атмосфере Земли, и силы земного притяжения все-таки возьмут свое.

В сущности, весь полет спутника — медленное падение на Землю: эллипс его орбиты все сужается — спутник описывает скручивающуюся спираль. Виток за витком. В центре, или, лучше, в фокусе спирали, — Земля. (Сказать «в фокусе» — лучше, потому что эта спираль, вовсе не похожа на заводную пружину часов. Ее витки — эллипсы. И эти эллипсы не только сужаются от витка к витку, но еще и вытягиваются. Кривая падения спутника оказывается очень сложной, лишь отдаленно напоминающей обычную спиральную линию, но все-таки спиралевидной. Нам тут всего важнее, что спутник, тормозясь в атмосфере, падает на Землю в строгом согласии с законами классической механики.)

В согласии с этими же законами планеты вращаются вокруг Солнца по устойчивым орбитам: они летят практически без трения — путь их пролегает через пространство, почти лишенное вещества, и можно утверждать, что они не теряют когда-то приобретенной энергии.

И вот электроны в атоме Резерфорда. Казалось бы, они летят вокруг ядра в еще более выгодных условиях, чем планеты, на пути которых нет-нет да и попадаются крупицы космического газа. Электронам совершенно неведомо трение: они сами — единственное население внутриатомного пространства. Им бы кружиться и кружиться, не зная помех… Идеальные планеты — никаких потерь энергии в пути!

Но на свою беду, кроме законов Кеплера — Ньютона, они должны еще слушаться законов классической теории электричества: они заряженные частицы. От этого с ними происходят события, которые должны были бы превратить их из планет в падающих спутников, если только классическая теория движения зарядов всюду и всегда верна.

Эта теория, созданная в конце XIX века, утверждала, что любой движущийся заряд не может безнаказанно изменять свою скорость в пути — ни по величине, ни по направлению. Пока он, окруженный своим силовым полем, летит прямолинейно и равномерно, его поле покорно следует за ним. Но стоит ему повернуть в сторону, как поле «заносит». Заряд на поворотах как бы расплескивает энергию своего поля — он ее излучает! А границы, где кончался бы заряд и начиналось его поле, нет: они ведь нечто единое. Излучая, заряд теряет энергию своего движения. Вращение — это непрерывные повороты, непрерывное изменение скорости. Вы чувствуете последствия?

По классической теории электроны в атоме Резерфорда, вращаясь вокруг ядра, должны были бы непрерывно излучать энергию. Другими словами, терять ее. Противиться притяжению положительно заряженного ядра им становилось бы все труднее. Их орбиты все сужались бы, как у спутников, тоже непрерывно теряющих энергию, правда, не на излучение, а на трение об атмосферу. Путь электронов хоть и по другой причине и по другому закону, но тоже превратился бы в скручивающуюся спираль — на сей раз в точности подобную пружине, и они упали бы на ядро.

Атом перестал бы существовать!

Когда свободные электроны мчатся на карусели современных круговых ускорителей (в честь бета-лучей радиоактивных элементов такие электронные ускорители называются бетатронами), эти заряженные частицы действительно излучают электромагнитные волны. И чем выше скорость карусели, тем сильнее «заносит» поле, тем обильнее расплескивание энергии.

Конечно, это же происходит и с протонами в Дубне, В принципе тут никакой разницы нет — протоны тоже заряженные частицы. Только оттого, что они почти в две тысячи раз тяжелее электронов, потери на излучение у них до поры до времени не так заметны. Однако и тут эти потери неизбежны. И если частицы не врезаются в конце концов во внутренние стенки ускорительной камеры Дубенского синхрофазотрона, то лишь потому, что «пояски» электрического поля регулярно снабжают их все новыми и новыми порциями энергии.

Эти порции не только восполняют потери на излучение, а еще и позволяют частицам все больше увеличивать скорость вращения. Но вместе с возрастанием скорости возрастают и потери. И легко понять, что наступает момент, когда на возмещение одних только потерь уходит уже почти вся притекающая извне энергия. Тогда частицы перестают ускоряться… Так невольное и бесполезное испускание электромагнитных волн «на поворотах карусели» превращается, наконец, в неодолимое препятствие для доведения скорости заряженных частиц до световой.

Как упряма природа в своих законах! Она использует все, чтобы помешать частицам вещества приблизиться к заветному пределу — к скорости света. Она мобилизовала для этого не только свойства массы тел, не только свойства времени и пространства, но еще и свойства электрического заряда.

Атом Резерфорда — тоже карусель, планетная карусель. Но на ней к вращающимся электронам не притекает извне никакой энергии. И потому законы классической теории обрекали эти атомные электроны на неминуемое падение — на полное слияние с ядром. «Обреченный атом!» — так должны были бы назвать модель Резерфорда классики XIX века.

6

И все-таки Резерфорд был прав, когда сказал: «Теперь я знаю, как выглядит атом!» Он отважился на открытую ссору с классической теорией. И его отвага была тем замечательней, что он еще совсем не представлял себе, каким путем удастся выпутаться из беды. Он только был уверен, что удастся.

В другую эпоху и ученый другого склада, вероятней всего, испытал бы робость перед собственной идеей, раз ее так решительно и просто опровергает общепринятая теория. Но только что кончилось первое десятилетие XX века. Оно было отмечено такими глубокими революциями в физике, как гипотеза квантов и теория относительности. Дух новаторства витал в лабораториях первых физиков-атомников. И отвага Резерфорда была естественной, как отвага генерала, сознающего, что за его плечами — историческая правота. Такой видится эта смелость по крайней мере сегодня, издалека, через полвека, когда те давние подробности борьбы идей в науке о микромире — сомнения, споры, насмешки — уже размыты потоком протекшего времени.

Странно подумать, что в 1910 году, когда идея «обреченного атома» уже зрела в голове Резерфорда и предстоящий конфликт с классической электродинамикой уже отчетливо вырисовывался в его воображении, известный немецкий ученый Вилли Вин в одной беседе иронически сказал Резерфорду: «Англосаксы не могут понять теорию относительности!»

Надо же было адресовать это сомнительное умозаключение именно Резерфорду и как раз тогда, когда он уже различал сквозь туман дорогу в мир еще менее «понятных» физических представлений, чем те, какие принесла с собой теория Эйнштейна!

Защищаясь, Резерфорд рассмеялся. «Нет, почему лее, — примерно так ответил он Вину, — у нас, у англосаксов, более чем достаточно здравого смысла!» Заметьте: не фантазии, не смелости, а просто здравого смысла.

Всего чаще в книгах и очерках о научных открытиях перед нами проходят фигуры ученых-романтиков или ученых-мучеников. Мерилом внутренних достоинств этих прекрасных людей служат и вправду достойные восхищения человеческие черты — одержимость идеей, бескорыстие исканий, возвышенность мечты, пламенная самоотреченность… Словом, весь спектр романтических красок. Но ясная трезвость ищущей мысли не изображается почти никогда. Люди здравого смысла противопоставляются ученым-мечтателям, как существа низшего пошиба, как ползающие — летающим. Что же делать тогда с великой трезвостью Резерфорда — с ясной земной поэзией его мысли? Германская мечтательность Вилли Вина требовала, вероятно, восторженного постижения идей теории относительности — преклонения перед мистическим парением разума, которому только в озарении удается уловить относительность времени и пространства. А в эту же пору сам Эйнштейн, размышляя над расширением своей первоначальной теории — над природой всемирного тяготения, говорил Марии Кюри на прогулке в Альпах, что в общем-то он должен понять простую вещь: «Что происходит в падающем лифте?»

50
{"b":"833680","o":1}