Дальнейшие исследования были направлены на экспериментальное доказательство деление ядра урана, непосредственное измерение его энергии и определение условий самоподдерживающейся ядерной реакции.
Есть ли основания считать январь 1939 года тем рубежом, который пролег между двумя эпохами человечества – ядерной и безъядерной? Ведь именно в это время ученые атомщики поняли, что существует реальная возможность применения новой, небывалый по мощности энергии – энергия атомного ядра. В феврале 1939 года Л. Сциллард, эмигрировавший из Англии в США, писал Жолио Кюри: «Когда к нам сюда две недели назад пришла статья Гана, некоторые из нас сразу заинтересовались вопросом: высвобождаются ли нейтроны при распаде урана? Если выделяется более одного нейтрона, то становится возможной цепная ядерная реакция. При определенных обстоятельствах это может привести к созданию атомной бомбы чрезвычайно опасной для человечества». Это понял далеко не один физик. Представляется, тем не менее, что в это время Рубикон все-таки еще не был перейден. Не все, как выразится Сциллард, обстоятельства были ясны.
Предположение о том, что, наряду с осколками при делении исходного ядра испускается нейтроны, то есть те самые частицы, которые вызывают деление, нашло быстрое экспериментальное подтверждение в научных лабораториях Франции, США и СССР. Установление того факта, что в одном акте деления испускается в среднем 2-3 нейтрона, подвело к однозначному выводу – разветвленная цепная реакция возможна. Но неясные вопросы оставались. Какой изотоп урана подвержен делению? Каковы условия, при которых будет уменьшена вероятность обрыва цепи деления?
Нильс Бор и Дж. Уиллер пришли к заключению, что должен делиться уран-235. Летом 1940 года Макмиллан и Ф. Абельсон синтезировали из урана-238 первый трансурановый элемент с порядковым № 93 по таблице Менделеева. Он был назван нептунием. В этом же году американские физик Гл. Сиборг установил, что элемент № 93, являясь нестабильным, подвергается дальнейшему превращению и образует элемент № 94 с массовым числом 239. По ядерным свойствам он оказался сходным с ураном-235, и получил название плутоний. Это, кстати, очень символично. Ведь Плутоний греческий бог земледелия, плодородия, но одновременно и бог смерти. Человечество имело выбор, какую из ипостасей нового «плутония» предпочесть. Созидать ли с его помощью или разрушать. И делать этот выбор пришлось в условиях бурлящего мира, разделившегося на враждующие стороны, при явной агрессивности фашистского блока государств.
Так уже распорядилась история: почти одновременно с научным осознанием возможности раскола атомного ядра и получения его мощной энергии раскололся и сам мир. Ученые, еще вчера работавшие бок о бок, объединявшие свои усилия, предоставлявшие свои открытия, по существу, всему человечеству, оказались по разные стороны баррикад. Историческая реальность грубо вторглась в увлекательный мир «чистой» науки физиков-атомщиков. Вместо научного обмена наступила эпоха закрытости и секретности. Публикации по ядерной тематике исчезли из страниц научных журналов.
Глава 2. Советская атомная наука
Не была закрытой в тот период и наша, отечественная физическая школа. Разумеется, контакты наших физиков с их зарубежными коллегами были более ограниченными по сравнению с контактами между западноевропейскими учеными. Но практика научных стажировок в физических центрах Европы была распространена довольно широко. Наши молодые и перспективные физики участвовали в международных встречах и конференциях, работали в исследовательских лабораториях Германии, Англии, Голландии, внося свой вклад в построение и уточнение теории современной ядерной физики.
Для А.Ф. Иоффе школой стала лаборатория В. Рентгена в Мюнхенском университете. Л.И. Мандельштам и Н.Д. Папалекси были воспитанниками Страсбургского университета и учились у К.Ф. Брауна. П.Л. Капица тринадцать лет проработал в Кавендишской лаборатории Кембриджского университета у Э. Резерфорда. В двухгодичной командировке здесь же был и Ю.Б. Харитон в 1926-1928 годах. Л.Д. Ландау и Г.А. Гамов стали учениками Н. Бора и его копенгагенской школы теоретической физики. В.А. Фок посетил Геттинген и стажировался у М. Борна. Ю.А. Крутков – у Г. Лоренца и П. Эренфеста в Лейдене и у Дебая в Утрехте. Д.В. Скобельцын – во Франции у М. Кюри. В.Н. Кондратьев – у Дж. Франка в Геттингене. Часто выезжал в научные командировки в 1921-1933 годах создатель отечественной физико-химической школы Н.Н. Семенов, повышал квалификацию в Германии Я.И. Френкель, в Голландии, Англии и Германии – И.Е. Тамм.
Основы отечественной научной физической школы закладывались выдающимися русскими физиками конца XIX – начала ХХ веков А.Г. Столетовым, Н.А. Умовым, Б.Б. Голицыным, П.Н. Лебедевым. В ряду этих блестящих имен выделим, пожалуй, только одно – Петра Николаевича Лебедева. Основоположник немногочисленной, но сильной экспериментальный физической школы в Москве. Наука всегда развивается в определенном социальном пространстве. Но в нашей отечественной истории она далеко не всегда содействовала развитию естественнонаучного знания. Так произошло и со школой Лебедева, которая имела обозначившуюся перспективу обрести статус международного центра наподобие некоторых западноевропейских. Но в 1911 году в знак протеста против реакционной политики тогдашнего российского министра просвещения Кассо многочисленная группа профессоров и преподавателей (более 100 человек) ушла из Московского университета. Вместе с Лебедевым университет покинуло большинство его учеников и сотрудников. Первый отечественный научный коллектив физиков перестал существовать. Вплоть до 20-х годов в Московском университете и в России в целом длился период упадка в развитии физических исследований.
Но попытки возрождения предпринимались, одна из них связана с именем П.П. Лазарева, разносторонне одаренного ученого, труды которого касались основных вопросов физики, медицины, физической химии и геофизики. Эстафета Лазарева была подхвачена Д.С. Рождественским. В 1915-1916 годах, когда он был назначен заведующим Физическим институтом Петроградского университета и избран его ординарным профессором, Рождественский добился реорганизации всей старой системы подготовки физиков.
Результаты этой реорганизации сказались, конечно, не сразу, но она заложила серьезную основу для последующего превращения нашей северной столицы в крупнейший физический центр мирового значения.
Рождественский был инициатором создания особого отделения физики на физико-математическом факультете университета, активно участвовал в формировании отечественной школы оптики. Вот как вспоминает об этом русском выдающемся ученом Т.П. Кравец: «Мы, современники Дмитрия Сергеевича, его товарищи по работе все еще мыслили в то время в терминах теории квазиупругого электрона и максвелловской теории. И вот раздался удар грома. Появились работы Бора, которые показали, что путь, на котором беспомощны основы классической теории приводит к легкому выходу, к естественному выходу, если отказаться от этой теории квазиупругого электрона и встать на точку зрения электрона с какими-то квантовыми условиями, ограниченного в своем кружении около ядра. Дмитрий Сергеевич распутал очень много до тех пор запутанных вещей, исправил многие ошибки, которые были сделаны заграничными исследователями, короче говоря, сделал все то, что на западе соединяют с именами Арнольда Зоммерфельда. И когда восстановилась наша связь с заграницей, то оказалось, что советские ученые ни в малейшей степени не отстали от своих зарубежных коллег. Что они знают то же самое, что знают и за границей только в несколько отличном виде, иногда лучше, чем на Западе».
С именем Рождественского связанно не только становление петербургской научной школы оптики. В последствии он возглавил созданный по его инициативе Ленинградской оптический институт. Это были первые шаги в направлении использования новейших достижений науки для нужд промышленности и обороны страны. Так сложилось, что Рождественский умер раньше, чем его огромная роль в создании и развитии отечественной физической школы была оценена по достоинству.