Очень скоро началось состязание в скорости: астрономы по всему миру бросились к системам управления телескопами. Они хотели первыми увидеть столкновение в оптическом диапазоне. Хотя и не все были на низком старте. Наблюдательный сеанс LIGO подходил к концу, и Райан Фоли из Калифорнийского университета в Санта-Крузе решил, что может расслабиться. Он спокойно пил пиво со своим партнером в копенгагенском парке Тиволи, когда неожиданно получил сообщение от Дэйва Колтера – коллеги, вернувшегося домой в Калифорнию. Прочтя сообщение, Фоли немедленно извинился перед своим другом, попрощался и бросился к велосипеду. Ему не терпелось начать последующие наблюдения с помощью метрового телескопа Henrietta Swope в обсерватории Лас-Кампанас в Чили. Пять часов ушло на сопоставление начальных координат, предоставленных LIGO и Virgo, и как можно более точное определение местоположения события. Через одиннадцать часов после прихода гравитационной волны команда Фоли идентифицировала яркую вспышку в ближней инфракрасной области спектра в той точке неба, которую определили детекторы гравитационных волн. После этого Фоли отправил короткое сообщение своей коллеге Джесс Макайвер, просто сообщив: “Думаю, я нашел”. Получив первое оптическое изображение, команда Фоли выиграла гонку. Впоследствии оптический аналог этого гравитационного события назвали Swope Supernova Survey 2017а (SSSi/a)23.
Но и другие не слишком отстали. Особенно загруженными оказались телескопы в горах чилийской пустыни Атакама. Отключившись от столь многолюдной телеконференции с обсерваторией LIGO, Бранчези бросилась звонить своим коллегам из GRAWITA. Это объединение, входящее в итальянский Национальный институт астрофизики, было образовано специально для того, чтобы дополнять данные LIGO наблюдениями в разных областях электромагнитного спектра – радио-, оптическом, ближнем инфракрасном и рентгеновском диапазонах, а также в интервале частот, соответствующих гамма-излучению24.
Всего через тринадцать часов после прихода гравитационной волны астрономы GRAWITA, направив на место события телескоп REM в обсерватории Ла-Силья в пустыне Атакама, получили в оптическом диапазоне изображение взрыва при столкновении нейтронных звезд.
Несколько команд слегка задержались на старте. Уже прошло около часа после оповещения Мессика, а гарвардский астроном Эдо Бергер все еще сидел у себя в кабинете, пытаясь не заснуть на скучном и монотонном заседании кафедры. Крепкий кофе из университетского кафетерия не помогал. Когда его мобильный телефон зазвонил, он отключил звук. Тогда начал звонить телефон у него на столе. Коллеги прервали заседание, и Бергер поднял трубку: “Что случилось?”
Бергер слушал, и его брови поднимались все выше и выше. Он положил трубку, объявил, что совещание окончено, и буквально вытолкал всех из кабинета. В течение следующих нескольких минут Бергер быстро просмотрел поток сообщений и электронных писем, включая первое официальное автоматическое предупреждение LIGO с оценкой координат события, выглядевшего как столкновение двух нейтронных звезд. Похоже, LIGO зарегистрировал его ровно в тот момент, когда Бергер забирал свой кофе.
Благодаря “многоканальным” усилиям Бранчези и ее сторонников Бергер, как другие ученые и около семидесяти телескопов по всему миру, готов был действовать. Пришло время внимательно “присмотреться” к последствиям слияния нейтронных звезд. Поскольку космический телескоп Fermi оповестил о зарегистрированном всплеске гамма-излучения, Бергер знал: есть очень большая вероятность того, что это событие будет заметно и на других длинах волн. Сейчас ему нужна его команда, и быстро.
Кейт Александер только проснулась у себя в квартире в Бостоне. Она заканчивала аспирантуру и в команде Бергера отвечала за наблюдения в радиодиапазоне. Еще в постели Кейт увидела сообщение LIGO. Затем она увидела сообщение Бергера, где в строке “Тема” стояло: “Встречаемся у меня в кабинете через пять минут!” Три минуты на душ – и бегом в кампус. В десять, ровно через два часа после регистрации слияния, она вбежала в кабинет Бергера.
План разработали совместно с несколькими коллегами: чтобы определить местоположение и приступить к изучению источника, они используют оптический телескоп. Предлагалось следить за радиоактивным свечением килоновой, то есть облаком выброшенных при взрыве осколков нейтронных звезд. В этом облаке должны присутствовать тяжелые элементы, созданные, а затем выброшенные при столкновении. Они видны во всем электромагнитном спектре. “Мы были очень возбуждены и старались не дать возбуждению помешать нам делать то, что следовало”, – рассказывала Александер.
При любых наблюдениях в электромагнитном спектре, надеетесь ли вы зарегистрировать видимый свет, радиосигналы или сигналы любых других длин волн, важно знать, в какую точку неба следует направить телескоп. К счастью, с помощью Virgo стало возможно определить местоположение источника сигнала. Без Virgo “окно ошибки” – вероятная область, в которой расположен источник сигнала, – было бы слишком велико для каких-либо целенаправленных оптических наблюдений. Все же координаты, предоставленные LIGO и Virgo, не могли настолько сузить область поиска, чтобы была возможность определить хотя бы галактику, где произошло столкновение. Они только указывали, что событие произошло в определенной области неба, площадь которой примерно в сто пятьдесят раз превышает площадь полной Луны.
Чтобы сузить окно наблюдения, Александер, Бергер и их коллеги прежде всего выбрали прибор для наблюдений – мощную оптическую камеру DEC am (Dark Energy Camera, “камера темной энергии”), установленную на телескопе Victor М. Blanco в Чили.
Управляя этой камерой из Гарварда, они быстро, снимок за снимком, осмотрели очень большую область неба. Им понадобился час, чтобы обнаружить галактику на расстоянии 130 миллионов световых лет, в которой они заметили яркий источник, раньше там не виденный, – галактику NGС 4993 в созвездии Гидра. Бергер говорит, что это напоминает крестик, очень точно отмечающий нужное место. Позже выяснилось, что их команда определила точное местоположение источника через несколько минут после SWOPE, а затем к финишу пришли телескопы обзорного проекта DLT40, входящие в обсерваторию Лас-Кумбрес в Панаме, VISTA из Паранальской обсерватории в Атакаме, MASTER в России и многие другие.
Взволнованный Бергер позвонил Метцгеру – человеку, теоретически предсказавшему существование килоновой в 2014 году. Волнение Метцгера описать трудно, особенно после того, как он обнаружил, что светимость и цвет килоновой точно совпадают с его расчетами. Это означало, что идет радиоактивное затухание тяжелых элементов, синтезированных во время слияния. Цвет облака радиоактивных осколков ярко-голубой – значит, оно, как кончики языков пламени газовой плиты, невероятно горячее. Несколько дней облако постепенно гасло, а телескопы по всему миру внимательно отслеживали все его оттенки. По мере остывания выброшенного материала облако из синего постепенно становилось темно-красным. Астрономы смогли детально изучить спектр (химические “отпечатки пальцев”) килоновой. Стало понятно, что многие тяжелые элементы, включая золото, платину и серебро, образуются при таких столкновениях. Так была решена загадка возникновения этих элементов.
Команда Бергера хотела получить еще и фантастические снимки килоновой в диапазоне более коротких длин волн. Чтобы провести измерения в ультрафиолетовом диапазоне, они подали заявку на работу с космическим телескопом “Хаббл”. Каждая длина волны “сообщает” что-то новое, и астрономы в тот момент пытались получить всю возможную информацию. Обычно, чтобы получить доступ к телескопу “Хаббл”, требуется позаботиться об этом заранее и ждать несколько недель. Но ситуация была экстраординарной, и время выделили из “резерва директора”. Заявка содержала всего два абзаца. По словам Бергера, это, возможно, самая короткая из всех когда-либо написанных заявок. В ней просто говорилось, что их группа впервые обнаружила электромагнитное излучение, сопровождающее слияние двойной нейтронной звезды, и им нужно иметь возможность увидеть его в ультрафиолетовом свете. Заявку одобрили, и Бергер с сотрудниками получил возможность провести наблюдения всего через пять дней после обнаружения гравитационных волн. А еще через девять дней космический рентгеновский телескоп Chandra увидел первые явные сигналы слияния в рентгеновском диапазоне.