Литмир - Электронная Библиотека
A
A

В общих чертах мембраны клеток состоят из липидов, главным образом холестерина, который образует как бы каркас мембраны. В структуре этого каркаса находятся белки и молекулы Сахаров. Все это вместе создает образования, которые воспринимают лишь необходимые для клетки сигналы. Эти антенны, или рецепторы, настроены на восприятие одних сигналов и нечувствительны к другим. В соответствии с сигналами, поступающими с рецепторов мембраны, клетка меняет свою активность, скорость процесса деления и т. д. Так, благодаря мембране клетка отвечает только на нужный ей сигнал, или согласовывает первый уровень регуляции -- внутриклеточный -- с требованиями, предъявляемыми клетке организмом (рис. 1).

Второй уровень регуляции -- надклеточный -- создается гормонами. Гормоны -- специальные вещества, вырабатывающиеся в эндокринных железах; поступая в кровь, они оказывают влияние на деятельность чувствительных к ним клеток. Действие гормонов, например, таких эндокринных желез, как надпочечники и паращитовидные железы, прежде всего направлено на выполнение закона постоянства внутренней среды.

Если вспомнить, что первично жизнь зародилась в водной среде, то не может не восхитить, что состав и концентрация солей (ионов), омывающих клетку, практически точно соответствуют солевой среде Мирового океана в докембрийском периоде, когда в процессе эволюции создавалась структура современной клетки. В течение миллионов и миллионов лет состав клеток остается постоянным, несмотря на столь сложные их преобразования в специализированные ткани и органы в ходе дальнейшей эволюции живой природы.

Концентрация в крови кальция и фосфора, контролируемая главным образом паращитовидными железами, концентрация натрия и калия, контролируемая главным образом надпочечниками, строго охраняется в течение всей жизни индивидуума. Даже болезни, связанные со старением, не в состоянии вызвать существенных сдвигов этих жизненно важных элементов. Механизм смерти как бы обходит стороной эти показатели внутренней среды, одинаково важные и для одиночной клетки в первичном Мировом океане, и для нервной клетки головного мозга человека. Эти свойства охраняются, вероятно, столь стойко ради сохранения самой жизни.

Это обстоятельство в значительной мере объясняет большую свободу режима деятельности других эндокринных желез, а именно тех, которые принимают участие в обеспечении развития организма. Кроме того, ясно, что развитие требует содружественной, координированной работы ряда эндокринных желез. Поэтому в высокоспециализированных живых системах, включая человека, функционирует особая эндокринная железа, объединяющая деятельность ряда эндокринных желез; это как бы пульт управления и координации. Интеграция эндокринных желез осуществляется гипофизом, расположенным в хорошо защищенном костными образованиями "турецком седле", непосредственно под корой головного мозга в самой центральной точке черепной полости.

Каждой периферической эндокринной железе соответствует в гипофизе специальный гормон-регулятор. Это создает ряд отдельных систем, например: гипофиз -- половые железы, гипофиз -- щитовидная железа, гипофиз -надпочечники. Но благодаря тому что регуляция всех этих систем замыкается на уровне гипофиза, между системами осуществляется взаимодействие. Гипофиз представляет, таким образом, третий уровень регуляции у высших организмов.

Возникновение в процессе эволюции центрального регулятора -- гипофиза -- явилось важной ступенью в совершенствовании управления телом. Но гипофиз, регулируя состояние эндокринных желез, "слеп" в отношении внешнего мира. Этот регулятор может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельности организма, должно осуществляться приспособление тела к меняющимся внешним условиям.

О воздействии внешнего мира мы "узнаем" через кожу, глаза, органы обоняния, слуха и вкуса. Органы чувств передают полученную информацию в центральную нервную систему. Но, например, если антенны-рецепторы кожных клеток зафиксируют снижение температуры окружающей среды, этого еще недостаточно для того, чтобы не замерзнуть. Необходимо, чтобы информация о снижении температуры поступила в органы, которые способны повысить образование в организме тепла и снизить его расход. Таким устройством-регулятором, передающим информацию, полученную из внешнего мира, в рабочие органы, к соответствующим клеткам различных тканей, является гипоталамус.

Это тяжеловесное слово -- гипоталамус -- необходимо запомнить.

Гипоталамус -- чудо природы. С одной стороны, это типичная нервная ткань, состоящая из клеток нервной системы нейронов. Эти клетки посредством многочисленных нервных волокон связаны со всеми отделами нервной системы. Поэтому все, что нервная система "знает" о внешнем мире или о внутреннем мире организма, она легко и быстро может передать в гипоталамус.

С другой стороны, гипоталамус -- типичная эндокринная железа, выделяющая специальные гормоны. Эти гормоны регулируют деятельность гипофиза -- железы-регулятора многих отделов эндокринной системы. Кроме того, гипоталамус направляет свои гормоны и в отдаленные области тела, где эти гормоны выполняют регуляторную роль.

Таким образом, если центральная нервная система получила сигнал из органов чувств, то этот сигнал передается в гипоталамус, который, в свою очередь, посылает сигнал в гипофиз, а последний -- в рабочие органы. В некоторых случаях гипоталамус непосредственно через нервный аппарат или через гипоталамические гормоны воздействует на ткани тела. Так, благодаря гипоталамусу осуществляется взаимосвязь между внешним миром и внутренним миром организма.

Гипоталамус -- конкретное место стыка двух миров. Для этой особой связи между внешним и внутренним природа создала и особую форму: гипоталамус -гибрид нервной и эндокринной системы. Благодаря своему необычному устройству гипоталамус преобразовывает быстродействующие сигналы, поступающие из нервной системы, в медленнотекущие, но специализированные реакции эндокринной системы.

С первого взгляда может показаться непонятной необходимость существования и гипофиза, и гипоталамуса. Казалось бы, что гипоталамические гормоны могли бы во всех случаях без промежуточного звена -- гипофиза -непосредственно оказывать влияние на организм. Однако при этом гипоталамус много терял бы как орган регуляции. Для воздействия на процессы, протекающие в теле, необходимо достаточно большое количество гормонов. Поэтому гипоталамус должен был бы очень много растрачивать сил на производство гормонов и соответственно их меньше оставалось бы для регуляции. Действие гипоталамических гормонов, по существу, представляет собой продолжение нервного влияния, и эти гормоны оказывают на гипофиз именно такое регулирующее действие. Отсутствие у гипоталамуса ряда рабочих функций позволяет ему после передачи сигнала на гипофиз освобождаться для восприятия новых сигналов, поступающих из внешнего и внутреннего мира. Так, на первый взгляд обременительное дублирование аналогичных функций в гипоталамусе и гипофизе в действительности создает оптимальные условия для осуществления регуляции. Гипоталамус, таким образом, является четвертым уровнем регуляции в организме (см, рис. 1).

Пятый уровень регуляции -- центральная нервная система, включающая и кору головного мозга.

Беспрерывные изменения внешней среды требуют постоянного приспособления к ним функций тела. То же относится к регуляции, связанной с сознанием, или с выполнением произвольных действий, порожденных мыслью. Естественно поэтому, что сигналы, исходящие из различных отделов мозга, влияют на деятельность гипоталамуса. Более того, активность гипоталамуса как части мозга в какой-то степени контролируется другими отделами нервной системы.

Наконец, особая эндокринная железа, также находящаяся в мозге,-эпифиз-- оказывает регулирующее влияние на гипоталамус; в частности, изменяет его чувствительность к действию гормонов.

6
{"b":"81837","o":1}