Литмир - Электронная Библиотека
Небиологические принципы работы сознания

Помимо двух указанных подходов, возможно также третий, который рассматривает архитектуру сознания как систему структурирования информационного поля для распознания значимых элементов и их значений для формирования соответствующего поведенческого решения с целью обеспечения средового благополучия – выживания и репродукции.

Всем живым организмам, от бактерий и простейших до приматов и человека, постоянно требуется распознавать значение происходящего в окружающей среде для того, чтобы иметь возможность своевременно и адекватно отреагировать.

Организмы в каждый момент времени способны отделить «значимое» от «остального» таким образом, чтобы поведенческое решение позволяло обеспечивать средовое благополучие (поддерживать, восстанавливать, соответствовать требованиям).

Каким же образом организмам удается структурировать информационное поле и конструировать свою картину мира так, чтобы выделять значимое и получать необходимые значения для принятия поведенческого решения в каждый момент времени? Для ответа на этот вопрос необходимо определить базовые структуры сознания, реконструировать небиологические принципы и когнитивно-коммуникативный функционал сознания. Объединение и синтез данных структур, принципов и функционала в единую систему, позволит получить модель архитектуры сознания и, в дальнейшем, перенести его на искусственные носители для создания ИИ, уровня человека.

Три подхода – какой верный?

Какой из этих трех подходов верный – покажет время; каждый имеет в своей основе здравые идеи, так же, как и фундаментальные ограничения и барьеры, преодолеть которые пока не удается.

Первый подход, основанный на увеличении числа задач, скорости и производительности, ограничен тем, что простое объединение элементов в сложных явлениях и процессах далеко не всегда приводит к образованию качественно нового феномена. В первую очередь это касается живой природы. Например, соединение химических элементов или даже готовых клеток не приводит к созданию единого живого организма в лабораторных условиях.

Также сомнительно, что сознание человека может быть составлено из множества способностей решать каждую специфическую задачу по отдельности. Надежды, что «количество перейдет в качество» настолько же беспочвенны, как попытка создать ИИ из смартфона, установив на него как можно больше разных программ. Смартфон не становится «умнее» и тем более «разумным» от увеличения числа установленных на нем приложений; это все тот же смартфон, лишенный сознания и интеллекта. Даже если удастся в какой-то момент установить программы на все случаи жизни, одна задача останется нерешенной – смартфон не сможет самостоятельно выбрать – какая из текущих задач является приоритетной. «Независимо от того, насколько функциональным становится ИИ, он по-прежнему является аналогом швейцарского армейского ножа по обработке информации – множество полезных инструментов, умело объединенных в одном, удобном для переноски устройстве» (Kaplan, 2016).

Тем не менее, такой подход до сих пор имеет своих сторонников со времен создания первых прототипов ИИ в 50-х, одержимых идеей создания «супер-мозга», который будет «быстрее, чем Эйнштейн» (Russell, 2019). Но если задачей было обогнать Эйнштейна по скорости мышления, то с ней справились уже давно и можно праздновать победу. Калькулятор решает арифметические задачи намного быстрее чем любой человек на Земле, компьютер обыгрывает любого чемпиона в шахматы, Го, покер. Эйнштейн проиграл бы в скорости и объеме «умственной» работы любому современному компьютеру. Как сообщается, у Эйнштейна была дислексия, и он испытывал трудности с чтением и письмом, он совершал грамматические ошибки, которые не допустил бы обычный Word в современном компьютере домохозяйки. Очевидно, современный компьютер выглядел бы на фоне Эйнштейна существенно выгоднее во многих аспектах. Но также очевидно другое – ни один компьютер не способен разработать теорию относительности, и вообще какую-либо значимую теорию в принципе.

Производительность и скорость компьютера сами по себе не могут быть основой для создания ИИ, уровня человека. Убогий алгоритм на мощном компьютере не становится лучше; «он просто совершает больше ошибок…» (Russell, 2019). Эйнштейн известен не тем, что быстро думал или решал много поставленных перед ним задач, а тем, что смог определить – в чем заключается ключевая задача и найти ее решение. Не нам судить, насколько это было быстро или медленно – Эйнштейн точно не участвовал в соревнованиях по скоростному созданию теории относительности. Его главная заслуга в том, что он определил и сформулировал – в чем проблема, и затем предложил ее успешное решение.

Второй подход, предлагающий реконструировать мозг и обнаружить «паттерны распознания», также не представляется продуктивным: «…когда кто-то читает в СМИ, что такая-то техника ИИ «работает точно так же, как человеческий мозг», можно заподозрить, что это либо просто чье-то предположение, либо просто вымысел» (Russell, 2019).

Вообще говоря, попытки обнаружить сознание и интеллект в мозге, аналогичны тому, чтобы искать «ходьбу» в ногах или «плаванье» в плавниках и ластах. Изучение строения мышц, связок, костей многое проясняет о механике и принципах перемещения, но сами ходьба или плаванье не дают ответ на вопрос – что именно приводит в движение механизмы, вызывает и контролирует перемещение, что меняет стиль, скорость, направление движения и т.п.

Кроме того, морфологически и структурно мозг уже достаточно изучен для того, чтобы утверждать, что никаких специализированных отдельных «паттернов распознания» мозг не содержит, как бы на этом ни настаивал автор этого подхода – писатель и футуролог Рой Курцвейл (Kurzweil, 2013). Если «паттерны распознания» и существуют, то искать их надо не в мозге, как биологической структуре, а в когнитивном функционале, который обслуживается в том числе мозгом у тех видов, которые оснастились нервной системой и мозгом в ходе эволюции. Но сама способность распознания и принятия решения присуща без исключения всем живым организмам, в том числе и те, кто не обладает мозгом, нервной системой, специализированными сенсорными органами. Например, грибы, растения, бактерии и вирусы. Даже LUCA, что бы он ни представлял собой, должен был быть способен распознавать источники энергии от остального мира, а также самого себя от окружающего мира.

Поэтому ответы скорее находятся не в биогенетических структурах, а в небиологических принципах функционирования когнитивной деятельности и архитектуре сознания как системе структурирования информационного поля для выработки наиболее адекватного поведенческого решения.

В большинстве случаев, с которыми имеет дело ИИ в настоящее время, вопрос отделения «значимых данных (информации) от остальных» решается с помощью предустановленных алгоритмов на основании четко заданных критериев. Например, отсев поисковых запросов, имеющих маркетинговое значение, сортировка маркетинговых запросов по различным основаниям и т.п. Решению установленной заранее узкоспециализированной задаче подчинены сложные алгоритмы, нейросети, deep learning и общее повышение производительности. ИИ выбирает и сортирует информацию, релевантную заранее заявленным условиям и поставленной перед ним задачи. Все действия с информацией, которые будет выполнять ИИ, определяются только той задачей, которую установили разработчики.

В отличие от ИИ, жизнь и процветание любого вида живых организмов основаны в первую очередь – на распознании задачи во всем множестве элементов окружающей среды, и во вторую – на решении распознанных задач. Неспособность к распознанию и решению задач означает смерть организма и, в итоге, приводит к вымиранию всего вида в целом. Если «паттерны распознания» (и принятия решения) и существуют, то их источник не мозг или нервная система, а сознание, и ответ надо искать в архитектуре сознания, а не в биологических носителях. Мозг и нервная система – частный случай таких носителей, но не единственный носитель и источник. Так же как ноги, лапы, ласты, плавники, крылья – не источник перемещения, а лишь видовые способы реализации перемещения.

9
{"b":"804809","o":1}