Свет – фотоны, отражающиеся от стола, коробки и печенья, – попадает в колбочки, расположенные в первом слое нейронов вашей сетчатки, в самой задней части глаза, за линзой хрусталика. Честно говоря, принцип работы нейронов-колбочек кажется немного странным. Пока на них не упал свет, они постоянно испускают поток молекул на синапсы нейронов второго слоя: то есть эти фоторецепторы, детекторы света, постоянно посылают сообщения об отсутствии света. Когда колбочка поглощает фотон, ее мембранный потенциал на короткое время падает, и постоянный поток молекул на мгновение приостанавливается. Второй слой нейронов, биполярные клетки, считывает эту паузу как сигнал и преобразует ее в изменение своего потенциала. Некоторые биполярные клетки предпочитают темноту, поэтому они преобразуют эту химическую паузу в падение своего электрического потенциала; другие жаждут света, поэтому химическая пауза вызывает увеличение их потенциала. Эти первые два слоя нейронов с помощью химических сигналов превращают свет в напряжение, но при этом между ними не происходит обмена импульсами.
Второй слой зрительных нейронов передает сообщение по эстафете третьему. И здесь опять используется тот же механизм, только наоборот. Биполярные клетки во втором слое постоянно высвобождают молекулы на синапсы нейронов третьего слоя, но на этот раз их количество пропорционально потенциалу возбуждения биполярного нейрона: чем выше потенциал, тем больше молекул. В свою очередь получение этих молекул пропорционально изменяет потенциал нейронов третьего слоя. В процессе передачи от второго к третьему слою потенциал возбуждения превращается в концентрацию химических веществ и снова в мембранный потенциал. Многие нейроны в третьем слое представляют собой ганглиозные клетки – именно они общаются с остальной частью мозга, и для этого ганглиозные клетки превращают свой электрический потенциал в бинарные – «все или ничего» – импульсы.
Даже из такого поверхностного описания ясно, что сетчатка – это не просто пассивный фотодатчик, а сложный мини-мозг, вычислитель, состоящий из множества комплектующих [26]. Фотодетекторами у людей работают три типа нейронов-колбочек, чувствительных к трем соответствующим диапазонам длины световой волны, которые мы описываем как красный, зеленый и синий. А еще нейроны-палочки, позволяющие видеть в темноте, которых намного больше, чем колбочек. Итого по крайней мере девять типов биполярных клеток во втором слое плюс сложная сеть, образованная горизонтальными нейронами, которая контролирует поток молекул от колбочек ко второму слою, и более сорока типов амакриновых нейронов в третьем слое, чья работа состоит в управлении потоком молекул из второго слоя в третий. Из этих пятидесяти с лишним типов нейронов в первом и втором слоях сетчатки подавляющее большинство не используют импульсы для отправки сообщений.
(Отсутствие импульсов в системе нервных клеток глаза означает, что его нейроны не могут выполнять логические операции, столь любимые Маккаллоком и Питтсом. Когда в 1950-х годах друзья Питтса из Массачусетского технологического института представили первое веское доказательство того, что во взаимодействии нервных клеток глаза бинарная логика отсутствует [27], Питтс с отвращением сжег свою диссертацию, посвященную логике работы мозга [28].)
Если такое количество нейронов сетчатки спокойно обходится без импульсов, почему тогда другие нейроны все же используют их? Зачем преобразовывать гибкий, непрерывный, аналоговый сигнал потоков молекул и электрических потенциалов в дискретный, бинарный, двоичный – зачем, казалось бы, отбрасывать полезную информацию?
Ответ прост: импульсы позволяют нейронам передавать информацию точно, быстро и далеко.
Точно, быстро и далеко
Точно
Импульс – это временной маркер, сообщение, несущее информацию из разряда «что-то произошло прямо сейчас». Это может быть незначительное изменение в потоке света, падающего на сетчатку лягушки, вызванное небольшим движением маленького изогнутого темного объекта. Это может быть писк микроволновки, сообщающий, что остатки вчерашнего карри разогреты. Это может быть внезапное усиление давления на боковые мышцы языка, когда вы рассеянно прикусываете его коренными зубами. То, что произошло, почти наверняка привело к изменению в серии импульсов, приходящих от других нейронов в данный нейрон, – это интересная история, которую мы расскажем в следующей главе.
На создание импульса у нейрона уходит меньше миллисекунды, поэтому сам импульс может фиксировать время события с точностью до миллисекунды. Следовательно, импульсы – это сигналы, которые с чрезвычайной точностью фиксируют время события во внешнем мире.
Прекрасный пример исключительной точности нервных импульсов – то, как мозг крысы получает информацию от ее усов. Система усов-вибрисс у грызунов – излюбленный объект исследований нейробиологов, пытающихся понять, как мозг обрабатывает сенсорную информацию, поскольку она состоит из небольшого количества деталей.
У крысы всего от 30 до 35 основных вибрисс с каждой стороны морды [29], расположенных пятью аккуратными рядами, что по сложности несравнимо с более чем шестью миллионами колбочек в человеческом глазу. Мы можем проследить путь от нерва у основания усика до мозга и точно определить, какие нейроны реагируют на сигнал от каждого из них. Определив нейроны, получающие сигналы от одной конкретной вибриссы, мы можем, щелкая по ней, следить за ними и регистрировать реакцию.
Лаборатория Расмуса Петерсена в Манчестерском университете занималась в 2015 году во время экспериментов под руководством Майкла Бейла именно этим, чтобы выяснить, насколько точно каждый из первичных нейронов может посылать импульсы-сообщения [30]. Они использовали крошечный моторчик, чтобы быстро и в случайном порядке приводить вибриссу в движение, и повторяли один и тот же шаблон движений неоднократно, записывая сигнал с одного из нейронов, связанных с основанием этого усика. Каждый подобный сеанс дерганья крысы за усы заставлял нейрон посылать определенную морзянку импульсов. Если ритмичная последовательность импульсов являлась сообщением об изменениях, ощущаемых усиком – возможно, о том, как быстро он движется или насколько сильно он изогнут, – то она должна довольно точно повторяться при каждом сеансе воздействия одним и тем же шаблоном движений.
Последовательность повторялась настолько точно, что лаборатория Петерсена столкнулась с техническими ограничениями своего высокотехнологичного регистратора. Мы живем в эпоху цифровых технологий, поэтому прибор, регистрирующий потенциал на электроде, расположенном рядом с чувствительным нейроном вибриссы, производил запись значений с частотой 24,4 кГц – то есть считывание показаний происходило 24 400 раз в секунду. Даже при таком абсурдно детальном временном разрешении казалось, что все импульсы происходили точно в один и тот же момент каждый раз, когда исследователи воспроизводили последовательность воздействий на вибриссу. «Точно в один и тот же момент» означает, что нервные импульсы в последовательности, отправляемой нейроном в ответ на набор движений вибриссы, повторяемый машиной, следовали каждый раз с точностью в пределах 41 микросекунды друг от друга. Это невообразимо крошечный промежуток времени: если на первой серии механических воздействий импульс регистрировался, скажем, на отметке 3,68092 секунды, то при многократном повторении он каждый раз оказывался на записи где-то между отметками 3,68091 и 3,68092 секунды. Столкнувшись с ограничениями используемых технологий, исследователи из лаборатории Петерсена были вынуждены собрать специальный электронный прибор для записи измерений с гораздо большей частотой дискретизации – 500 кГц, то есть считыванием показаний с электрода 500 000 раз в секунду, – чтобы выяснить, насколько точно повторялись импульсы.