Литмир - Электронная Библиотека
Содержание  
A
A

Основоположником современной теории кроветворения стал российский гистолог Александр Александрович Максимов, который в 1907 году аргументированно обосновал гипотезу, что каждая клетка крови развивается из единой «родоначальной» клетки. Он дал ей в своем докладе перед обществом гематологов в Берлине название Stammzelle (сейчас это известно как «мультипотентная стволовая кроветворная клетка») – так благодаря этому великому российскому ученому появилось понятие «стволовая клетка» и целое новое направление в науке. Я горжусь тем, что учился в академии, где он в свое время преподавал и проводил исследования: это был не только высокоэрудированный ученый, владевший четырьмя языками, но и человек с сильным и независимым характером. Не став терпеть порядки, насаждаемые большевистским начальством в академии, он в феврале 1922 года с женой и сестрой совершил дерзкий побег (как утверждают, на буере по льду Финского залива) в Финляндию, откуда затем отправился в США, где снова занялся своим любимым делом – исследованием клеток человеческих тканей.

Вернемся, однако, к рассказу о стволовых кроветворных клетках. Они обладают двумя уникальными свойствами:

Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении - i_014.jpg
у них неограниченная способность к самоподдержанию, то есть, по сути, они бессмертны;

Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении - i_015.jpg
они могут развиться в любую клетку крови.

Мне очень нравится наглядное сравнение стволовой кроветворной клетки с маткой в пчелином улье: есть главная пчелиная матка, и остальные в семье являются ее потомками. С кроветворением почти так же: существуют главные клетки-матки, а уже из них развиваются все остальные. И как в улье, где один пчелиный рой всегда представлен потомками нескольких семей от разных маток, кроветворение у человека «поликлонально», то есть представлено потомками не одной, а нескольких стволовых клеток.

Как бы нам ни хотелось, но стволовых клеток ограниченное количество, и они не могут делиться бесконечно. Поэтому, как правило, каждая из клеток создает свой клон – своеобразного «исполнителя» ее воли. Он выглядит и действует точно так же, как стволовая клетка, но, в отличие от нее, смертен: в среднем он истощается (то есть устает делиться и погибает) уже через месяц. Таким образом стволовые клетки берегут себя, обеспечивая себе то, что можно в некотором смысле назвать бессмертием.

Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении - i_016.jpg

Рис. 5. Процесс кроветворения

Глава 3

«Регулировщики движения»: эритропоэтин, тромбопоэтин и их роль в кроветворении

Формирование того или иного вида клеток крови зависит от потребностей организма и от целого ряда внешних факторов.

Процесс гемопоэза управляется цитокинами – маленькими пептидными молекулами, которые называют факторами. Они стимулируют или подавляют выработку тех или иных клеток. Каждый фактор как регулировщик на перекрестке: запускает один поток машин и тормозит другой.

Число клеток крови в единицу времени регулируется по принципу обратной связи.

Например, количество эритроцитов и содержание гемоглобина в них зависят от потребностей тканей в кислороде. В условиях дефицита кислорода – скажем, при изматывающих физических нагрузках или длительном нахождении высоко в горах – организм сначала реагирует через компенсаторные механизмы: учащается дыхание, повышается частота сердечных сокращений (тахикардия). Так тело пытается добыть больше кислорода (дышать чаще) и заставить его циркулировать быстрее (частое сердцебиение).

Если же возросшая потребность в кислороде сохраняется дольше нескольких часов или даже суток, повышается выработка одного из главных «регулировщиков» – эритропоэтина. Этот гормон стимулирует выработку эритроцитов: их становится больше, они переносят кислород активнее, и дефицит кислорода в тканях устраняется. Именно благодаря такой перенастройке организма у спортсменов при регулярных тренировках повышается выносливость.

Эритропоэтин вырабатывается в основном почками (до 90 %), клетками печени и в некоторой степени клетками венозных сосудов и селезенкой.

Активнее всего этот гормон синтезируется при недостатке кислорода, например в условиях высокогорья. Я недавно побывал на Алтае и заинтересовался горами, в частности посмотрел документальные фильмы про покорение Эвереста.

Практически все альпинисты при восхождении на него берут с собой шерпов – местных жителей. Непал, на территории которого находится Эверест, – самая высокогорная страна. Около 40 % ее территории находится выше 3000 м над уровнем моря. Поэтому многие местные жители рождаются и живут в условиях высокогорья.

Человек, который всю жизнь прожил в низине, при подъеме в горы начинает испытывать гипоксию. В горах воздух более разреженный, для нас там кислорода недостаточно, поэтому, поднимаясь, мы ощущаем головокружение, может болеть голова, возникать «мушки» перед глазами, ощущение усталости. Чтобы не развилась горная болезнь, жители низины должны подниматься в горы постепенно и оставлять себе достаточно времени для акклиматизации – позволять телу привыкнуть к новым условиям.

На Эвересте же акклиматизироваться невозможно: после 8000 м над уровнем моря начинается так называемая зона смерти, где воздух содержит всего 1/3 от той нормы кислорода, к которой мы привыкли на равнине.

У шерпов, которые живут на высоте в среднем 2000‒3000 м над уровнем моря, повышенный уровень эритропоэтина, а значит, больше гемоглобина и эритроцитов. И проблемы со здоровьем у них возникают, когда они не поднимаются, а, наоборот, спускаются в низину. Внизу для них слишком много кислорода: организм не понимает, как теперь жить и что делать, на уровне симптомов это ощущается как головокружение и головная боль. И они, спускаясь вниз, тоже должны проходить процесс акклиматизации.

Кроме высокогорья, причиной повышенного уровня эритропоэтина могут быть как физические нагрузки, так и различные заболевания. Например, эритропоэтин стабильно повышен у людей с врожденными пороками сердца, при хронических болезнях органов дыхания, при большинстве анемий.

И наоборот, снижение синтеза эритропоэтина наблюдается при истинной полицитемии (заболевание, при котором повышается количество эритроцитов), хронической болезни почек и анемии хронических заболеваний.

Определение уровня эритропоэтина имеет большое значение для дифференциальной диагностики.

Помимо эритропоэтина, существует множество других цитокинов, регулирующих не только правильное созревание, но и выживание стволовых клеток, которые без их сопровождения подвергаются апоптозу – клеточному самоубийству.

Среди этих «регулировщиков» есть гранулоцитарный колониестимулирующий фактор (Г-КСФ), который влияет на количество гранулоцитов; тромбопоэтин, контролирующий уровень тромбоцитов, и множество других. Главное – постарайтесь запомнить их общее название: цитокины. Мы вернемся к ним, когда станем говорить о заболеваниях. И если вы будете знать, что цитокин = «регулировщик» производства различных клеток крови, то вся картина происходящего станет вполне понятной.

К 2020 году мы научились искусственно и вне человеческого организма синтезировать лекарственные препараты – стимуляторы кроветворения: рекомбинантный эритропоэтин, гранулоцитарный колониестимулирующий фактор (Г-КСФ), агонисты рецептора тромбопоэтина.

Препараты эритропоэтина используются для лечения заболеваний, сопровождающихся снижением его уровня, прежде всего при хронической болезни почек, а агонисты тромбопоэтина – при сниженном количестве тромбоцитов.

Глава 4

Для чего организму нужны железо и витамины?

Для правильного функционирования организма и образования клеток требуется разнообразное питание: белки, витамины, аминокислоты и микроэлементы. В случае с кровью это важно прежде всего для эритроцитов. Их в крови, как мы уже говорили, больше, чем других клеток, и они выполняют важнейшую функцию – снабжение всех тканей кислородом.

5
{"b":"781137","o":1}